全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PZT95/5粉体的冲击合成反应机理初探

DOI: 10.11858/gywlxb.2007.03.018, PP. 322-326

Keywords: PZT95/5粉体,冲击波,合成机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用柱面冲击波回收装置,通过炸药爆轰产生的冲击波作用于Pb4O3、ZrO2和TiO2混合物粉体以合成PZT95/5粉体。通过对回收粉体进行的X射线衍射(XRD)分析,并结合冲击波理论,从实验和理论两个方面探讨了PZT粉体的合成机理和过程。结果表明,PZT的合成反应与Pb3O4的分解反应几乎同时进行,由于冲击波的特殊性,系统的温度和压力能同时满足Pb3O4分解和PZT合成的反应热力学条件,由Pb3O4分解的PbO一旦形成,就立刻与ZrO2、TiO2等氧化物反应生成PZT;冲击波合成PZT粉体属于特殊的固相反应,物质的扩散速度和反应速度大大提高。

References

[1]  Thadhani N N. Shock-Induced Chemical Reactions and Synthesis of Materials [J]. Progress in Materials Science, 1993, 37: 117-226.
[2]  Kuznetsova E M, Reznichenko L A, Razumovskaya O N, et al. Shockwave Activation of High-Temperature Ferroelectric Powders [J]. Technical Physics Letters, 2000, 26(9): 767-770.
[3]  Liao Q L, Yang Sh Y, Cai L C, et al. Synthesis of Hydroxyapatite Powder by Shock Wave Treatment Method [J]. Chinese Journal of High Pressure Physics, 2002, 16(4): 249-253. (in Chinese)
[4]  廖其龙, 杨世源, 蔡灵仓, 等. 用冲击波合成法制备羟基磷灰石粉体 [J]. 高压物理学报, 2002, 16(4): 249-253.
[5]  Liu J J, Tan H, Xu K, et al. Shock Synthesis of Zinc Ferrite and Its Photocatalytic Activity in Dehydrogenation of H2S [J]. Chinese Journal of High Pressure Physics, 1997, 11(2): 90-97. (in Chinese)
[6]  刘建军, 谭华, 徐康, 等. 纳米铁酸锌的冲击波合成及它的光催化活性 [J]. 高压物理学报, 1997, 11(2): 90-97.
[7]  Jia L G, Xiong D Y. Influencing Factors of TiC Synthesis by Shock Wave [J]. Nonferrous Metal, 2002, 54(4): 1-5. (in Chinese)
[8]  贾丽改, 熊代余. 冲击波方法合成TiC的影响因素 [J]. 有色金属, 2002, 54(4): 1-5.
[9]  Wang J X, Yang Sh Y, He H L, et al. Structure and Properties of Lead Zirconate Titanate 95/5 Powders Synthesized by Shock Wave Technique [J]. Journal of the Chinese Ceramic Society, 2005, 33(6): 718-722. (in Chinese)
[10]  王军霞, 杨世源, 贺红亮, 等. 冲击波合成Pb(ZrTi0. 05)O3粉体的结构和特性 [J]. 硅酸盐学报, 2005, 33(6): 718-722.
[11]  do Ian P H , Benson D J. Micromechanical Modeling of Shock-Induced Chemical Reactions in Heterogeneous Multi-Material Powder Mixtures [J]. International Journal of Plasticity, 2001, 17: 641-668.
[12]  Gong P, Tang Zh P, Shen Zh W. Experimental Investigation and DEM Simulation of Mass Mixing under Shock Loading [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 21-26. (in Chinese)
[13]  龚平, 唐志平, 沈兆武. 冲击下材料质量混合的实验研究及离散元模拟 [J]. 高压物理学报, 2004, 18(1): 21-26.
[14]  Zemsky S V, Ryabchikov Y A, Epshteyn G N, et al. Mass Transfer of Carbon under the Influence of a Shock Wave [J]. Phys Met Metall, 1979, 46: 171-173.
[15]  Yang Ch, Hu J B. Deffusion of Tungsten Atom in Iron and Nickel under the Shock Loading [J]. Ordnance Material Science and Engineering, 1997, 20(2): 20-23. (in Chinese)
[16]  杨超, 胡金彪. 冲击载荷下钨在铁和镍中的扩散 [J]. 兵器材料科学与工程, 1997, 20(2): 20-23.
[17]  Zhang W J. A Discussion on the Mechanism of Shock-Induced Transformation of Graphite to Diamond [J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 217-227. (in Chinese)
[18]  张万甲. 冲击引起石墨→金刚石相转变机理的探讨 [J]. 高压物理学报, 2004, 18(3): 217-227.
[19]  Li X J, Wang J X, Zhang Y J, et al. Research of Temperature Rise at the Particles Interface Caused by Adiabatic Friction in Explosive Consolidation of Powders [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 97-102. (in Chinese)
[20]  李晓杰, 王金相, 张越举, 等. 爆炸粉末烧结颗粒间摩擦引起的界面温升研究 [J]. 高压物理学报, 2004, 18(2): 97-102.
[21]  Li Sh P. Processes for Advanced Ceramics [M]. Wuhan: Wuhan University of Technology Press, 1990: 202-203. (in Chinese)
[22]  李世普. 特种陶瓷工艺学 [M]. 武汉: 武汉工业大学出版社, 1990: 202-203.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133