全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

轴向变速运动弯曲梁的固有频率分析

, PP. 37-44

Keywords: 哈密顿原理,动力刚度矩阵法,有限元法,轴向运动弯曲梁,变速,固有频率,Wittrick-Williams算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于动力刚度矩阵法对轴向变速运动弯曲梁的固有频率进行分析,根据Hamilton原理,推导轴向变速运动弯曲梁的时域控制方程和边界条件,通过傅里叶变换得到频域控制方程和边界条件,求解频域控制方程,并结合位移边界条件和载荷边界条件,建立轴向变速运动弯曲梁的动力刚度矩阵模型;引入Hermite形式的形函数,建立了轴向变速运动弯曲梁的有限元模型。算例中,通过对比现有文献中的结果、有限元模型结果和动力刚度矩阵法模型结果,验证了该文所建立的力学模型,动力刚度矩阵法比有限元法具有更高的精度和效率,分析了轴向变速运动弯曲梁固有频率随着弯曲梁轴向运动速度、加速度、轴向受力、边界条件的变化规律。

References

[1]  Wang L, Chen H H, He X D. Model frequency characteristics of axially moving beam with supersonic/hypersonic speed [J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(2): 163―168.
[2]  Wittrick W H, Williams F W. A general algorithm for
[3]  computing natural frequencies of elastic structure [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(1): 263―284.
[4]  Williams F W. An algorithm for exact eigenvalue calculations for rotationally periodic structures [J]. International Journal for Numerical Methods in Engineering, 1986, 23(3): 609―622.
[5]  Yuan S, Ye K S, Williams F W. Second order mode-finding method in dynamic stiffness matrix methods [J]. Journal of Sound and Vibration, 2004, 269(3): 689―708.
[6]  Williams F W. Review of exact buckling and frequency calculations with optional multi-level substructuring [J]. Computers and Structures, 1993, 48(2): 547―552.
[7]  袁驷, 叶康生, Williams F W, Kennedy D. 杆系结构自由振动精确求解的理论和算法[J]. 工程力学, 2005, 22(增刊1): 1―6. Yuan Si, Ye Kangsheng, Williams F W, Kennedy D. Theory and algorithm of the exact method for free vibration problems of skeletal structures [J]. Engineering Mechanics, 2005, 22(Suppl 1): 1―6. (in Chinese)
[8]  叶康生, 赵雪健. 动力刚度法求解平面曲梁面外自由振动问题[J]. 工程力学, 2012, 29(3): 1―8. Ye Kangsheng, Zhao Xuejian. Dynamic stiffness method for out-of plane free vibration analysis of planar curved beams [J]. Engineering Mechanics, 2012, 29(3): 1―8. (in Chinese)
[9]  陈强, 杨国来, 王晓锋. 移动集中质量作用下Euler- Bernoulli梁的振动频率分析[J]. 计算力学学报, 2012, 29(3): 340―344, 351. Chen Qiang, Yang Guolai, Wang Xiaofeng. Natural frequency analysis of Euler-Bernoulli beam subjected to moving mass [J]. Chinese Journal of Computational Mechanics, 2012, 29(3): 340―344, 351. (in Chinese)
[10]  Banerjee J R. Dynamic stiffness matrix development and free vibration analysis of a moving beam [J]. Journal of Sound and Vibration, 2007, 303(1): 135―143.
[11]  Mote Jr, C D. A study of band saw vibrations [J]. Journal of the Franklin Institute, 1965, 279(6): 430―445.
[12]  Stylianou M, Tabarrok B. Finite element analysis of an axially moving beam, part I: time integration [J]. Journal of Sound and Vibration 1994, 178(4): 433―453.
[13]  Stylianou M, Tabarrok B. Finite element analysis of an axially moving beam, part II: stability analysis [J]. Journal of Sound and Vibration, 1994, 178(4): 455―481.
[14]  ÖZkaya E, ÖZ H R. Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method [J]. Journal of Sound and Vibration, 2002, 252(4): 782―789.
[15]  Orloske K, Leamy M J, Parker R G. Flexural-torsional buckling of misaligned axially moving beams: I. Three-dimensional modeling, equilibria, and bifurcations [J]. International Journal of Solids and Structures, 2006, 43(14/15): 4297―4322.
[16]  Orloske K, Parker R G. Flexural-torsional buckling of misaligned axially moving beams: II. Vibration and stability analysis [J]. International Journal of Solids and Structures, 2006, 43(14/15): 4323―4341.
[17]  Chen L Q, Yang X D. Nonlinear free transverse vibration of an axially moving beam: comparison of two models [J]. Journal of Sound and Vibration, 2007, 299(1/2): 348―354.
[18]  Kong L, Parker R G. Approximate eigensolutions of axially moving beams with small flexural stiffness [J]. Journal of Sound and Vibration, 2004, 276(1/2): 459―469.
[19]  Lee U, Jang I. On the boundary conditions for axially moving beams [J]. Journal of Sound and Vibration, 2007, 306(3/4/5): 675―690.
[20]  Ding H, Chen L Q. Galerkin methods for natural frequencies of high-speed axially moving beams [J]. Journal of Sound and Vibration, 2010, 329(17): 3484―3494.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133