全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

荷载作用下饱和水泥浆体中氯离子扩散性能研究

DOI: 10.6052/j.issn.1000-4750.2013.12.1163, PP. 33-40

Keywords: 水泥浆体,荷载作用,氯离子扩散,孔隙率,体应变

Full-Text   Cite this paper   Add to My Lib

Abstract:

混凝土类水泥浆复合材料中各种尺度的孔隙,如凝胶孔、毛细孔、掺入的气体气泡以及微裂纹等影响着氯离子的扩散性能。孔隙结构参数(如孔隙率)在外荷载作用下会产生变化,进而影响了水泥浆体中氯离子扩散性能。外荷载作用对氯离子扩散行为的影响,可以等效为外荷载所引起的孔隙率的改变对氯离子扩散性能的影响。从微观角度出发,将饱和水泥浆体看作由水泥浆体基质(其孔隙率为零)和孔隙水夹杂相所组成的两相复合材料介质。基于弹性力学理论推导并获得了饱和水泥浆体达到其强度前(即未产生新裂纹前)当前孔隙率与材料初始孔隙率及体应变之间的定量关系,得到了水泥浆体中氯离子扩散系数与这些参数的定量关系。基于Fick第二定律分析了外荷载(体应变)和孔隙率变化对氯离子扩散性能的影响。研究表明:氯离子在饱和砂浆中的扩散系数随孔隙率增大而显著增大;氯离子在砂浆中的扩散系数随压缩体应变的增大而减小,随拉应变增大而增大。

References

[1]  洪雷, 危行财, 汪明刚. 单轴压荷载下掺合料对混凝土渗透性的影响[J]. 建筑材料学报, 2013, 16(1): 143―146. Hong Lei, Wei Xingcai, Wang Minggang. Influence of mineral admixtures on permeability of concrete under sustained uniaxial compressive load [J]. Journal of Building Materials, 2013, 16(1): 143―146. (in Chinese)
[2]  Konin A, Ois R F, Arliguie G. Penetration of chlorides in relation to the microcracking state into reinforced ordinary and high strength concrete [J]. Materials and Structures, 1998, 31(5): 310―316.
[3]  Lim C C, Gowripalan N, Sirivivatnanon V. Microcracking and chloride permeability of concrete under uniaxial compression [J]. Cement and Concrete Composites, 2000, 22(5): 353―360.
[4]  张武满, 巴恒静, 高小建, 等. 粉煤灰与应力水平对混凝土渗透性的影响[J]. 江苏大学学报(自然科学版), 2008, 29(4): 356―359. Zhang Wuman, Ba Hengjing, Gao Xiaojian, et al. Influence of fly ash and stress level on permeability of concrete [J]. Journal of Jiangsu University: Natural Science Edition, 2008, 29(4): 356―359. (in Chinese)
[5]  万小梅, 苏卿, 赵铁军, 等. 单轴受压混凝土的微裂缝和氯离子侵入性[J]. 土木建筑与环境工程, 2013, 35(1): 104―110. Wan Xiaomei, Su Qing, Zhao Tiejun, et al. Microcracking and chloride penetration of concrete under uniaxial compression [J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(1): 104―110. (in Chinese)
[6]  Francois R, Maso J C. Effect of damage in reinforced concrete on carbonation or chloride penetration [J]. Cement and Concrete Research, 1988, 18(6): 961―970.
[7]  Gowripalan N, Sirivivatnanon V, Lim C C. Chloride diffusivity of concrete cracked in flexure [J]. Cement and Concrete Research, 2000, 30(5): 725―730.
[8]  何世钦, 贡金鑫. 弯曲荷载作用对混凝土中氯离子扩散的影响[J]. 建筑材料学报, 2005, 8(2): 134―138. He Shiqin, Gong Jinxin. Influence of flexural loading on permeability of chloride ion in concrete [J]. Journal of Building Materials, 2005, 8(2): 134―138. (in Chinese)
[9]  Li C Q, Zheng J J, Shao L. New solution for prediction of chloride ingress in reinforced concrete flexural members [J]. ACI Materials Journal, 2003, 100(4): 319―325.
[10]  Boulfiza M, Sakai K, Banthia N, et al. An integrated analysis of reinforced concrete beam subjected to both loading and chloride ion ingress [J]. Proceedings of the Japan Concrete Institute, 1999, 21(3): 79―84.
[11]  Wang L, Soda M, Ueda T. Simulation of chloride diffusivity for cracked concrete based on RBSM and truss network model [J]. Journal of Advanced Concrete Technology, 2008, 6(1): 143―155.
[12]  Xiang T, Zhao R. Reliability evaluation of chloride diffusion in fatigue damaged concrete [J]. Engineering Structures, 2007, 29(7): 1539―1547.
[13]  Oh B H, Jang S Y. Prediction of diffusivity of concrete based on simple analytic equations [J]. Cement and Concrete Research, 2004, 34(3): 463―480.
[14]  Pichler B, Scheiner S, Hellmich C. From micro-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: micromechanical upscaling of stiffness and strength of hydrating shotcrete [J]. Acta Geotechnica, 2008, 3(4): 273―294.
[15]  Ghabezloo S. Association of macroscopic laboratory testing and micromechanics modeling for the evaluation of the poroelastic parameters of a hardened cement paste [J]. Cement and Concrete Research, 2010, 40(8): 1197―1210.
[16]  Kumar R, Bhattacharjee B. Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33(1): 155―164.
[17]  Beaudoin J J, Feldman R F, Tumidajski P J. Pore structure of hardened portland cement pastes and its influence on properties [J]. Advanced Cement Based Materials, 1994, 1(5): 224―236.
[18]  Lian C, Zhuge Y, Beecham S. The relationship between porosity and strength for porous concrete [J]. Construction and Building Materials, 2011, 25(11): 4294―4298.
[19]  Yaman I O, Aktan H M, Hearn N. Active and non-active porosity in concrete Part II: Evaluation of existing models [J]. Materials and Structures, 2002, 35(2): 110―116.
[20]  Jin L, Du X L, Ma G W. Macroscopic effective moduli and tensile strength of saturated concrete [J]. Cement and Concrete Research, 2012, 42(12): 1590―1600.
[21]  杜修力, 金浏. 含孔隙混凝土复合材料有效力学性能研究[J]. 工程力学, 2012, 29(6): 70―77. Du Xiuli, Jin Liu. Research on the effective mechanical properties of concrete composite material with pores [J]. Engineering Mechanics, 2012, 29(6): 70―77. (in Chinese)
[22]  Lutz M P, Monteiro P J, Zimmerman R W. Inhomogeneous interfacial transition zone model for the bulk modulus of mortar [J]. Cement and Concrete Research, 1997, 27(7): 1113―1122.
[23]  Garboczi E J, Bentz D P. Computer simulation of the diffusivity of cement-based materials [J]. Journal of Materials Science, 1992, 27(8): 2083―2092.
[24]  Martys N S, Torquato S, Bentz D P. Universal scaling of fluid permeability for sphere packings [J]. Physical Review E, 1994, 50(1): 403―408.
[25]  Zheng J J, Zhou X. Analytical solution for the chloride diffusivity of hardened cement paste [J]. Journal of Materials in Civil Engineering, 2008, 20(5): 384―391.
[26]  Hansen T C. Physical structure of hardened cement paste: A classical approach [J]. Materials and Structures, 1986, 19(6): 423―436.
[27]  Wang L, Ueda T. Mesoscale modeling of water penetration into concrete by capillary absorption [J]. Ocean Engineering, 2011, 38(4): 519―528.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133