全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

考虑膜材各向异性的膜结构褶皱分析

DOI: 10.6052/j.issn.1000-4750.2013.12.1180, PP. 183-191

Keywords: 膜结构,向量式有限元,各向异性,褶皱分析,本构矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

推导了应用于向量式有限元三角形膜单元的各向异性膜材本构矩阵;进一步推导了各向异性膜材褶皱状态下的修正本构矩阵,并提出更为合理的主偏夹角计算方法。在此基础上编制了考虑膜材各向异性的膜结构荷载分析与褶皱分析程序,并进行了算例验证。算例分析表明,所编制的向量式有限元程序可以很好地完成各向异性膜结构的荷载分析与褶皱分析,验证了理论推导的正确性和分析程序的可靠性。分析结果还表明膜材的各向异性与褶皱效应会对膜结构的受力性能产生显著影响。

References

[1]  Fujikake M, Kojima O, Fukushima S. Analysis of fabric tension structures [J]. Computers & Structures, 1989, 32(3/4): 537―547.
[2]  谭锋, 杨庆山, 李作为. 薄膜结构分析中的褶皱判别准则及其分析方法[J]. 北京交通大学学报, 2006, 30(1): 35―39.
[3]  Tan Feng, Yang Qingshan, Li Zuowei. Wrinkling criteria and analysis method for membrane structures [J]. Journal of Beijing Jiaotong University, 2006, 30(1): 35―39. (in Chinese)
[4]  Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part I. Basic procedure and a plane frame element [J]. Journal of Mechanics, 2004, 20(2): 113―122.
[5]  Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part II. Plane solid elements [J]. Journal of Mechanics, 2004, 20(2): 123―132.
[6]  Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples [J]. Journal of Mechanics, 2004, 20(2): 133―143.
[7]  彭涛. 向量式有限元在索膜结构分析中的应用[D]. 杭州: 浙江大学, 2011.
[8]  Peng Tao. application of vector form intrinsic finite element method in the analysis of cable membrane structures [D]. Hangzhou: Zhejinag University, 2011. (in Chinese)
[9]  王瑞章. 二向应力状态最大主应力方向的最简判别 [J]. 力学与实践, 1991, 13(5): 65―66.
[10]  Wang Ruizhang. A simple criteria method of two identification of maximal principal stress and its orientation [J]. Mechanics and Engineering, 1991, 13(5): 65―66. (in Chinese)
[11]  Miller R K, Hedgepeth J M. Finite element analysis of partly wrinkled membranes [J]. Computers & Structures, 1985, 20(1/2/3): 631―639.
[12]  Haug E, Powell G H. Finite element analysis of nonlinear membrane structures [C]// IASS Pacific Symposium Part II: on Tension Structures and Space Frames, Tokyo and Kyoto, Japan, 1972: 83―92.
[13]  Bletzinger K U, Ramm E. A general finite element approach to the form finding of tensile structures by the updated reference strategy [J]. International Journal of Space Structures, 1999, 14(2): 131―145.
[14]  Valdés J G, Miquel J, Oñate E. Nonlinear finite element analysis of orthotropic and prestressed membrane structures [J]. Finite Elements in Analysis and Design, 2009, 45(6/7): 395―405.
[15]  Barnes M R. Form finding and analysis of tension structures by dynamic relaxation [J]. International Journal of Space Structures, 1999, 14(2): 89―104.
[16]  Maurin B, Motro R. The surface stress density method as a form-finding tool for tensile membranes [J]. Engineering Structures, 1988, 20(8): 712―719.
[17]  周树路, 叶继红. 膜结构找形方法-改进力密度法[J]. 应用力学学报, 2008, 25(3): 421―425.
[18]  Zhou Shulu, Ye Jihong. Modified force-density method for form-finding of membrane structures [J]. Chinese Journal of Applied Mechanics, 2008, 25(3): 421―425. (in Chinese)
[19]  Wagner H. Flat sheet girder with very thin metal web [J]. Z Flugtech Motorluftschiffahrt, 1929, 20 : 200―207.
[20]  Roddeman D G, Drukker J, Oomens C W, et al. The wrinkling of thin membrane: Part I - theory [J]. Journal of Applied Mechanics, ASME, 1987, 54 : 884―887.
[21]  Lu K, Accorsi M, Leonard J. Finite element analysis of membrane wrinkling [J]. International Journal of Numerical Methods in Engineering, 2001, 50 : 1017―1038.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133