全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

结构逆可靠度最可能失效点的改进搜索算法

DOI: 10.6052/j.issn.1000-4750.2011.06.0347, PP. 394-399

Keywords: 可靠度,逆可靠度,改进均值法,逆可靠度最可能失效点,搜索算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

确定逆可靠度最可能失效点(MPPIR)是结构逆可靠度分析的核心问题,以改进均值法(AMV)及其改进方法应用最广泛。但当功能函数非线性程度较高或为非凸非凹函数时,AMV易出现周期振荡等不收敛问题。以现有的AMV改进方法为基础,通过迭代过程中控制搜索方向和步长,提出一种MPPIR的改进搜索算法,并结合不精确一维搜索方法给出了具体的计算流程。数值算例分析表明:提出的算法与AMV相比具有更好的收敛性,与弧长搜索法相比不需要采用优化方法确定最优步长,且对于非凸非凹功能函数以及高度非线性功能函数都具有良好的收敛性。

References

[1]  Der Kiureghian A, Zhang Y, Li C C. Inverse reliability problem [J]. Journal of Engineering Mechanics, 1994, 120(5): 1154―1159.
[2]  Aldebenito M A, Schu?ller G I. A survey on approaches for reliability-based optimization [J]. Structural and Multidisciplinary Optimization, 2010, 42(5): 645―663.
[3]  Tu J, Choi K K. A new study on reliability based design optimization [J]. Journal of Mechanical Design, 1999, 121(4): 557―564.
[4]  Youn B D, Choi K K, Du L. Enriched performance measure approach for reliability-based design optimization [J]. AIAA Journal, 2005, 43(4): 874―884.
[5]  Youn B D, Choi K K. An investigation of nonlinearity of reliability-based design optimization approaches [J]. Journal of Mechanical Design, 2004, 126(3): 403―411.
[6]  Du X P, Chen W. Sequential optimization and reliability assessment method for efficient probabilistic design [J]. Journal of Mechanical Design, 2004, 126(2): 225―233.
[7]  Yin X L, Chen W. Enhanced sequential optimization and reliability assessment method for probabilistic optimization with varying design variance [J]. Structure and Infrastructure Engineering, 2006, 2(3/4): 261―275.
[8]  Yi P, Cheng G D, Jiang L. A sequential approximate programming strategy for performance-measure-based probabilistic structural design optimization [J]. Structural Safety, 2008, 30(2): 91―109.
[9]  Li H, Foschi R O. An inverse reliability method and its application [J]. Structural Safety, 1998, 20(3): 257―270.
[10]  Wu Y T, Wirsching P H. New algorithm for structural reliability estimation [J]. Journal of Engineering Mechanics, 1987, 113(9): 1319―1336.
[11]  Du X P, Sudjianto A, Chen W. An integrated framework for probabilistic optimization using inverse reliability strategy [C]// ASME. International Design Engineering Technical Conferences and the Computers and Information in Engineering Conference. Chicago USA, ASME, 2003.
[12]  Ramu P, Qu X Y, Youn B D, et al. Inverse reliability measures and reliability-based design optimization [J]. International Journal of Reliability and Safety, 2006, 1(1/2): 187―205.
[13]  Shayanfar M A, Massah S R, Rahami H. An inverse reliability method using neural networks and genetic algorithms [J]. World Applied Sciences Journal, 2007, 2(6): 594―601.
[14]  Cheng J, Li Q S. Application of the response surface methods to solve inverse reliability problems with implicit response functions [J]. Computational Mechanics, 2008, 43(4): 451―459.
[15]  易平, 杨迪雄. 基于功能度量法的概率优化设计的收敛控制[J]. 力学学报, 2008, 40(1): 128―134.
[16]  Yi Ping, Yang Dixiong. Convergence control of probabilistic structural design optimization based on performance measure approach [J]. China Journal of Theoretical and Applied Mechanics, 2008, 40(1): 128―134. (in Chinese)
[17]  秦权, 林道锦, 梅刚. 结构可靠度随机有限元-理论及工程应用[M]. 北京: 清华大学出版社, 2006: 21―26.
[18]  Qin Quan, Lin Daojin, Mei Gang. Stochastic finite element method for structural reliability-theory and engineering applications [M]. Beijing: Tsinghua University Press, 2006: 21―26. (in Chinese)
[19]  袁亚湘, 孙文瑜. 最优化理论与方法[M]. 北京: 科学出版社, 2005: 94―107.
[20]  Yuan Yaxiang, Sun Wenyu. Optimization theory and methods [M]. Beijing: Science Press, 2005: 94―107. (in Chinese)
[21]  Gong J X, Yi P. A robust iterative algorithm for structural reliability analysis [J]. Structural and Multidisciplinary Optimization, 2011, 43(4): 519―527.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133