全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

塔里木盆地柯坪地区上寒武统表生溶蚀型藻格架白云岩的地球化学特征及意义*

DOI: 10.7605/gdlxb.2013.01.008, PP. 77-94

Keywords: 塔里木盆地,上寒武统,藻格架白云岩,表生溶蚀,碳氧同位素,稀土元素,地球化学特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用野外观察、室内薄片鉴定及多项地球化学分析技术方法,对塔里木盆地柯坪地区上寒武统表生溶蚀型藻格架白云岩的特征及成因进行了研究。宏观上,藻格架白云岩呈丘状、透镜状夹于潮坪相白云岩层间,由于差异性溶蚀,发育了大量表生溶蚀孔。微观上,藻格架由富藻的泥粉晶白云石组成,而架间孔由浅色的亮晶白云石充填。藻格架泥粉晶白云石呈他形—半自形,镶嵌结构,具有暗红色—橙红色的阴极发光,较高的Na、K含量,较低的Fe含量;δ13C为-0.572‰~0.124‰、平均值-0.116‰,δ18O为-5.391‰~-4.983‰、平均值-5.240‰,表明其形成于准同生阶段盐度较高的相对氧化环境中。架间充填的亮晶白云石胶结物,呈半自形—自形中细晶,具有昏暗的阴极发光或者不发光,较低的Na、K含量,较高的Fe含量,δ13C值为-0.662‰~-0.251‰、平均值为-0.460‰;δ18O值为-6.639‰~-5.939‰、平均值-6.267‰,表明其形成于相对还原的埋藏环境。稀土元素分析结果表明,二者均具有LREE轻微富集、HREE亏损、Eu负异常特征,与海相泥晶灰岩稀土元素配分模式相似,揭示了其白云化流体均来自于原始的海水。在溶蚀作用方面,亮晶白云石胶结物相对泥粉晶白云石藻格架更易于溶蚀。前者在大气水表生溶蚀过程中,主量元素Ca、Mg丢失显著,Mg/Ca值由0.955降至0.007,微量元素Na、K丢失相对明显,Na/Ca值由原来的3.8×10-4降为1.9×10-4,K/Ca值由1.1×10-3降至检测限以下,而不改变稀土元素的配分模式。这些特征表明,表生溶蚀过程在元素特征上是一个去白云化的盐度降低过程,而这一过程中基本无稀土元素的带入带出。

References

[1]  高志前,樊太亮,李岩,等.2006.塔里木盆地寒武—奥陶纪海平面升降变化规律研究[J]. 吉林大学学报(地球科学版),549-556.
[2]  郭建华,沈昭国,李建明.1994.塔北东段下奥陶统白云石化作用[J].石油与天然气地质,15(1):51-59.
[3]  韩银学,李忠,韩登林,等.2009.塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J].岩石学报,25(10):2405-2416.
[4]  何莹,鲍志东,沈安江,等.2006.塔里木盆地牙哈—英买力地区寒武系—下奥陶统白云岩形成机理[J].沉积学报,24(6):806-818.
[5]  胡文瑄,陈琪,王小林,等.2010.白云岩储集层形成演化过程中不同流体作用的稀土元素判别模式[J].石油与天然气地质,31(6):810-818.
[6]  胡忠贵,郑荣才,胡九珍,等.2009.川东—渝北地区黄龙组白云岩储集层稀土元素地球化学特征[J].地质学报,83(6):782-790.
[7]  黄思静.2010.碳酸盐岩的成岩作用[M].北京: 地质出版社,1-288.
[8]  黄思静,龚业超,黄可可,等.2010.埋藏历史对碳酸盐溶解—沉淀的影响:以四川盆地东北部三叠系飞仙关组和塔里木盆地北部奥陶系为例[J].地球科学进展,25(40):381-390.
[9]  黄思静,胡作维,王春梅,等.2007.四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J].地球科学进展,22(5):495-503.
[10]  吴仕强,朱井泉,胡文瑄,等.2009.塔里木盆地寒武—奥陶系白云岩结构类型及其形成机理[J].现代地质,23(4):638-647.
[11]  贾承造.1999.塔里木盆地构造特征与油气聚集规律[J].新疆石油地质,20(3): 177-183.
[12]  金之钧,王清晨.2004.中国典型叠合盆地与油气成藏研究新进展:以塔里木盆地为例[J].中国科学(D辑),34(增1): 1-12.
[13]  康玉柱.2008.中国古生代碳酸盐岩古岩溶储集特征与油气分布[J].天然气工业,28(6):1-12.
[14]  康玉柱,康志宏.1994.塔里木盆地构造演化与油气[J].地球学报,(3-4): 180-191.
[15]  汤良杰,张一伟,金之钧,等.2004.塔里木盆地、柴达木盆地的开合旋回[J].地质通报,23(3):254-260.
[16]  王小林,金之钧,胡文瑄,等.2009.塔里木盆地下古生界白云石微区REE配分特征及其成因研究[J].中国科学(D辑),39(6):721-733.
[17]  王旭,沈建伟,陈代钊,等.2011.塔里木盆地柯坪—巴楚地区早古生代白云岩类型及微量元素地球化学特征[J].矿物岩石,31(2):23-32.
[18]  吴仕强,朱井泉,王国学,等.2008.塔里木盆地寒武—奥陶系白云岩结构构造类型及其形成机理[J].岩石学报,24(6):1390-1400.
[19]  谢小敏,胡文瑄,王小林,等.2009.新疆柯坪地区寒武纪—奥陶纪碳酸盐岩沉积旋回的碳氧同位素研究[J].地球化学,38(1):75-88.
[20]  杨杰东,王宗哲.1994.新疆柯坪地区早古生代地层的碳、氧和锶同位素[J].地质论评,40(4):377-385.
[21]  朱井泉,吴仕强,王国学,等.2008.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,15(2):67-79.
[22]  Allen P,Keith M L.1965.Carbon isotope ratios and palaeosalininities of purbeck-Wealden carbonates[J].Nature,208(5017):1278-1289.
[23]  Baker P A,Burns S J.1985.Occurrence and formation of dolomite in organic-rich continental-margin sediments[J]. AAPG Bulletin,69(11):1917-1930.
[24]  Banner J L,Hanson G N.1990.Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J].Geochimica et Cosmochimica Acta,54: 3123-3138.
[25]  Bau M.1991.Rare element mobility during hydrothermal and metamorphic fluid rock interaction and the significance of the oxidation state of europium[J].Chemical Geology,93(3-4): 219-230.
[26]  Brand U,Veizer J.1980.Chemical diagenesis of multicomponent carbonate system-1: Trace elements[J].Journal of Sed Petrology,50: 1219-1236.
[27]  Durocher S,Aasm I S.1997.Dolomitization and neormorphism of Mississippian(Visean)Upper Debolt formation,Blueberry Field,northeastern British Columbia: Geologic,Petrologic,and chemical evidence[J].AAPG Bulletin,81(6):954-977.
[28]  Folk R L,Land L S.1975.Mg/Ca ratio and salinity: Two controls over crystallization of dolomite[J].AAPG Bulletin,59(1):60-68.
[29]  Frimmel H E.2009.Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J].Chemical Geology,258(3-4): 338-353.
[30]  Garrels R M,Christ C L.1965.Minerals,Solutions,and Equilibria[M].San Francieco:Freeman,Cooper and Co.,450.
[31]  Gao G Q,Land L S.1991.Early Ordovician Cool Creek Dolomite,Middle Arbuckle Group,Slick Hills,Sw Oklahoma,U.S.A.: Origin and Modification[J].Journal of Sedimentary Research,61(2):161-173.
[32]  James R H,Elderfield H.1996.Chemistry of ore-forming fluids and mineral formation rates in an active hydrothermal sulfide deposit on the Mid-Atlantic Ridge[J].Geology,24(12):1147-1150.
[33]  Kirmaci M Z,Akda K.2005.Origin of dolomite in the Late Cretaceous-Paleocene limestone turbidites,Eastern Pontides,Turkey[J].Sedimentary Geology,181(1-2): 39-57.
[34]  Land L S.1985.The origin of massive dolomite[J].Journal of Geological Education,33:112-125.
[35]  Land L S.1991.Dolomitization of the Hope Gate Formation(north Jamaica)by seawater: Reassessment of mixing zone dolomite[J].In: Taylor H P,O′ Neil J R,Kaplan I R(eds).Isotopic Signatures and Sedimentary Records.Lecture Notes in Earth Sciences.Berlin: Springer-Verlag,43: 49-68.
[36]  Machel H G,Mountjoy E W.1986.Chemistry and environment of dolomitizarion-a reappraisal[J].Earth-Science Reviews,23(3):175-222.
[37]  Mattes B W,Mountjoy E W.1980.Burial dolomitization of the Upper Devonian Miette Buildup,Jasper National Park,Alberta[J].In: Zenger D H,Dunham J B,Ethington R L(eds).Concepts and Models of Dolomitization.SEPM Special Publication,28: 259-297.
[38]  Mazumdar A,Tanaka K, et al.2003.Characteristics of rare earth element abundances in shallow marine continental platform carbonates of Late Neoproterozoic successions from India[J].Geochemical Journal,37(2):277-289.
[39]  Mills R A,Elderfield H.1995.Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound,26°N Mid-Atlantic Ridge[J].Geochimica et Cosmochimica Acta,59(17):3511-3524.
[40]  Morrow D W.1982.Diagenesis: The chemistry of the dolomitization and dolomite precipication[J].Geoscience Canada,9(1):5-13.
[41]  Popp B N,Anderson T F,Sandberg P A.1986.Textural and isotopic variations among constituents in middle Devonian limestones,north America[J].Journal of Sedimentary Petrology,56(5):715-727.
[42]  Qing H,Mountjoy E W.1989.Multistage dolomitization in Rainbow Buildups,Middle Devonian Keg River Formation,Alberta,Canada[J].Journal of Sedimentary Petrology,59(1):114-126.
[43]  Qing H R,Bosence D W J,Rose E P F.2001.Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates,Gibraltar,western Mediterranean[J].Sedimentology,48(1):153-163.
[44]  Searl A.1994.Diagenesisdestruction of reservoir of potential in shallow marine sandstones of the Broadford Beds(Lower Jurassic),North west Scotland-depositional versus burial and thermal history controls on porosity destruction[J].Marine and Petroleum Geology,11(2):131-147.
[45]  Sverjensky D A.1984.Europium redox equilibria in aqueous solution[J].Earth and Planetary Science Letters,67(1):70-78.
[46]  Vandeginste V,Swennen R,Reed, et al. 2009.Host rock dolomitization and secondary porosity development in the Upper Devonian Cairn Formation of the Fairholme carbonate complex(South-west Alberta,Canadian Rockies): Diagenesis and geochemical modeling[J].Sedimentology,56(7):2044-2060.
[47]  Veizer J.1983.Chemical diagenesis of carbonate: Theory and application of trace element technique[C]. In: Stable Isotopes in Sedimentary Geology.Soc.Econ.Paleontologists Mineralogists Short Course No.10,3-1-3-100.
[48]  Veizer J,Hoefs J.1976.Nature of 18O-16O and13C-12C secular trends in sedimentary carbonate rocks[J].Geochimica et Cosmochimica Acta,40(11):1387-1395.
[49]  Warren J.2000.Dolomite: Occurrence,evolution and economically important associations[J].Earth-Science Reviews,52(1-3): 1-81.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133