全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

复合材料格栅圆柱筒稳定性数值仿真与试验
Numerical simulation and test on stability of composite grid stiffened cylinder

DOI: 10.13801/j.cnki.fhclxb.20140519.001

Keywords: 复合材料格栅,圆柱筒,轴压稳定性,全壳有限元法,物理试验
composite grid stiffened
,cylinder,axial compression stability,all-shell finite element method,physical test

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为一种典型的航空航天结构,复合材料格栅圆柱筒的轴压稳定性决定了航天器结构的极限承载能力。现有的均匀化等效法和梁-壳有限元法模拟均存在一定的不足。考虑到肋条的局部应力和稳定性问题,将肋条等效为壳单元,提出了全壳有限元法。结合某型号飞行器复合材料格栅承力筒,分别采用这3种方法进行了轴压稳定性研究,同时设计了全尺寸轴压破坏试验。对比数值计算和试验结果得知两者的一致性较好, 并且验证了该型号飞行器设计的合理性。均匀化等效法、梁-壳有限元法和全壳有限元法得到的结果与试验值的偏差分别为14.9%、9.5%和5.2%。全壳有限元法精度最高,并且能准确预测结构破坏位置,为同类结构的设计提供了参考。 As a typical aerospace structure, the axial compression stability of composite grid stiffened cylinder determines the ultimate bearing capacity of the spacecraft structure. The homogenization equivalent method and beam-shell finite element method which have been researched are deficient. The local stress and stability of grids were taken into consideration, the grids were equivalent to shell elements, and the all-shell finite element method was put forward. Depending on the composite grid stiffened cylinder of certain aircraft, the three methods were used to study the axial compression stability respectively. Meanwhile, a full-size axial compression destruction test was also designed. Good agreement was achieved in the comparison between the numerical simulation and test results, which verified the rationality of the aircraft design. The deviation between the homogenization equivalent method, the beam-shell finite element method, the all-shell finite element method and test value are 14.9%, 9.5% and 5.2% respectively. The all-shell finite element method has the highest precision, and can predict the failure modes accurately. The research can also be regarded as a design reference for similar structures. 国家自然科学基金(11072150)

References

[1]  Samuel K, Li G Q, Jack H, et al. Buckling load analysis of grid stiffened composite cylinders[J]. Composites: Part B, 2003, 34(1): 1-9.
[2]  Xu X C. The general stability of C/E composite triangular grid shells[J]. Journal of Astronautics, 1987(3): 22-28 (in Chinese). 徐孝诚. 碳-环氧树脂复合材料三角形网格加劲壳的总体稳定性[J]. 宇航学报, 1987(3): 22-28.
[3]  Huybrechts S. Analysis and behavior of grid structures[D]. Stanford: Stanford University, 1995.
[4]  He J X, He G Q, Ren M F, et al. Buckling load analysis of composite grid stiffened structure skirts[J]. Journal of Solid Rocket Technology, 2009, 32(3): 331-336 (in Chinese). 何景轩, 何国强, 任明法, 等. 复合材料格栅结构稳定性分析[J]. 固体火箭技术, 2009, 32(3): 331-336.
[5]  He J X, He G Q, Ren M F, et al. Analysis on buckling behavior of composite grid structure[J]. Journal of Solid Rocket Technology, 2008, 31(4): 389-392 (in Chinese). 何景轩, 何国强, 任明法, 等. 复合材料格栅结构屈曲特性分析[J]. 固体火箭技术, 2008, 31(4): 389-392.
[6]  Zhang Z F, Bai R X, Chen H R. New hybrid method for composite grid structures analysis[J]. Acta Materiae Compositae Sinica, 2008, 25(4): 168-173 (in Chinese). 张志峰, 白瑞祥, 陈浩然. 用于AGS结构分析的混合法[J]. 复合材料学报, 2008, 25(4): 168-173.
[7]  Vasiliev V V, Razin A F. Anisogrid composite lattice structures for spacecraft and aircraft applications[J]. Composite Structures, 2006, 76(1): 182-189.
[8]  Du S Y, Zhang J F, Zhang B M. Overview of application and research on advanced composite grid structures[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 419-424 (in Chinese). 杜善义, 章继峰, 张博明. 先进复合材料格栅结构(AGS)应用与研究进展[J]. 航空学报, 2007, 28(2): 419-424.
[9]  Wu D C, Xu Y M, Wan Q. Global buckling load analysis of grid stiffened composite panels[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 168-173 (in Chinese). 吴德财, 徐元铭, 万青. 先进复合材料格栅加筋板的总体稳定性分析[J]. 复合材料学报, 2007, 24(2): 168-173.
[10]  Jaunky N, Knight N F. Optimal design of grid-stiffened composite panels using global and local buckling analyses[J]. Journal of Aircraft, 1998, 35(3): 478-486.
[11]  Kassegne S K, Reddy J N. Local behavior of discretely stiffened composite plates and cylindrical shells[J]. Composite Structures, 1998, 41(1): 13-26.
[12]  Satish Kumar Y V, Madhujit M. A new triangular stiffened plate element for laminate analysis[J]. Composites Science and Technology, 2000, 60(6): 935-943.
[13]  Guo M W, Harik I E, Ren W X. Buckling behavior of stiffened laminated plates[J]. International Journal of Solids and Structures, 2002, 39(1): 3099-3055.
[14]  Chen H J, Tsai S W. Analysis and optimum design of composite grid structures[J]. Journal of Composite Materials, 1996, 30(4): 503-534.
[15]  Zhang Z F, Chen H R, Bai R X. Stability analysis of advanced composite grid stiffened cylindrical shell[J]. Journal of Dalian University of Technology, 2008, 48(5): 631-635 (in Chinese). 张志峰, 陈浩然, 白瑞祥. 先进复合材料格栅加筋圆柱壳体稳定性分析[J]. 大连理工大学学报, 2008, 48(5): 631-635.
[16]  Holopalnen T P. Finite element free vibration analysis of eccentrically stiffened plates[J]. Computers and Structures, 1995, 56(6): 993-1007.
[17]  Bai R X, Wang M, Chen H R. Buckling behavior of composite AGS with delamination[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 136-141 (in Chinese). 白瑞祥, 王蔓, 陈浩然. 含损伤复合材料AGS板的屈曲特征[J]. 复合材料学报, 2005, 22(4): 136-141.
[18]  Bai R X, Wang M, Chen H R. Postbuckling behavior of damaged advanced grid stiffened structure after impact[J]. Acta Materiae Compositae Sinica, 2006, 23(3): 141-145 (in Chinese). 白瑞祥, 王蔓, 陈浩然. 冲击后含损伤复合材料格栅加筋板的后屈曲[J]. 复合材料学报, 2006, 23(3): 141-145.
[19]  Chen H R, Zhou B H, Bai R X. Nonlinear thermal buckling behavior of advanced composite grid stiffened plates with delamination[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 172-177 (in Chinese). 陈浩然, 周柏华, 白瑞祥. 含分层损伤的复合材料格栅(AGS)板的非线性热屈曲分析[J]. 复合材料学报, 2007, 24(4): 172-177.
[20]  Xu X C. Experimental verification for buckling load prediction of C/E composite grid stiffened shells under external pressure[J]. Structure and Environment Engineering, 1985, 85(3): 35-40 (in Chinese). 徐孝诚. C/E复合材料网格加劲壳临界外压计算的实验验证[J]. 强度与环境, 1985, 85(3): 35-40.
[21]  Crisfield M A. A fast incremental/iterative solution procedure that handles "snap-through"[J]. Computers and Structures, 1981, 13(1-3): 55-62.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133