全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

不同防护形式复合材料板雷击损伤分区特性
Damage zoning characteristics of composite laminates with different protections subjected to lightning strike

DOI: 10.13801/j.cnki.fhclxb.20140605.004

Keywords: 雷击试验,复合材料防护,放电通道物理特性,雷击损伤区域划分,多场耦合
lightning strike test
,composite protection,physical characteristics of lightning channel,lightning strike damage zoning,multi-field coupling

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于A+B+C+D 4种标准雷电流波形的联合作用, 开展了不同防护形式复合材料板雷击试验。考虑放电通道物理特性,分析放电通道与复合材料表面间的作用过程,将复合材料表面损伤区域分解成初始附着区、附着传导区、附着扩展区、二次附着区和扫掠损伤区,并对未防护基准件、局部喷铝、全喷铝防护件及铜网防护件4类板的各区域进行了损伤特性分析。结果表明:复合材料表面损伤是强电磁场条件下放电通道热电物理特性与复合材料表面热电特性及电荷分布的共同作用结果;复合材料表面铝层喷涂方式、厚度以及均匀程度均影响表面损伤的对称性和损伤分区特性;铜网防护造成复合材料板表面粗糙使得表面损伤分区复杂; 表面电荷累积特性和分布的均匀程度直接影响二次附着区和扫掠损伤区的分布;复合材料表面雷击损伤包括纤维升华、断裂、起毛,基体炭化熔融、烧蚀,材料分层、剥落以及防护材料的熔融汽化和断裂等。分析结果可以用于复合材料雷击防护定性设计。 Lightning strike tests of composite laminates with different protections were conducted based on the combining strikes of four standard waveforms A+B+C+D. The interaction procedure between the lightning channel and composite laminate surface was analyzed, and the surface damage area of composite was divided into initial attachment area, attached conduction area, attached expansion area, reattachment area and swept damage area with respect to the physical characteristics of lightning channel. And the damage characteristics were analyzed for four types of laminates: unprotected reference specimen, partial and full-scale spraying aluminum specimens, and copper grid specimen. The results show that the surface damage of composite is induced by the interactions of thermo-electrical physical properties of lightning channel, surface thermo-electrical properties of composites, and charge distribution in strong electromagnetic field. The characteristics of symmetry and zoning of damage area on surface of composites are affected by spraying shape, thickness and homogeneity of aluminum layer. The rough surface of composite laminates induced by copper grid protection leads to the complexity of surface damage zoning. The accumulation characteristic and homogeneity of distribution for the induced charge on surface of composite laminates are the direct reasons for distributions of reattachment area and swept damage area. The primary damage forms of composites subjected to the lightning strike include fiber sublimation, rupture and fuzzing, the matrix charring melting and ablation, the delamination and detaching of materials, and the melting, vaporization and breakdown of protective materials. The analysis results can be applied to the qualitative design for lightning protection of composites. 高等学校学科创新引智计划(B07050); 航空科学基金(2013ZF53068); 西北工业大学基础研究基金(JC20110257)

References

[1]  Larsson A, Lalande P, Clergerie A B, et al. The lightning swept stroke along an aircraft in flight. Part I: thermodynamic and electric properties of lightning arc channels[J]. Journal of Physics D: Applied Physics, 2000, 33(15): 1866-1875.
[2]  Larsson A, Lalande P, Clergerie A B. The lightning swept stroke along an aircraft in flight. Part II: numerical simulations of the complete process[J]. Journal of Physics D: Applied Physics, 2000, 33(15): 1876-1883.
[3]  Larsson A, Delannoy A, Lalande P. Voltage drop along a lightning channel during strikes to aircraft[J]. Atmospheric Research, 2005, 76(1-4): 377-385.
[4]  Hirano Y, Katsumata S, Iwahori Y, et al. Artificial lightning testing on graphite/epoxy composite laminate[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1461-1470.
[5]  Qie X S, Jiang R B, Wang C X, et al. Simultaneously measured current, luminosity, and electric field pulses in a rocket-triggered lightning flash[J]. Journal of Geophysical Research, 2011, 116(D10): D10102.
[6]  Borovsky J E. An electrodynamic description of lightning return strokes and dart leaders: Guided wave propagation along conducting cylindrical channels[J]. Journal of Geophysical Research, 1995, 100(D2): 2697-2726.
[7]  Izadi M, Kadir M Z A, Gomes C, et al. Analytical expressions for electromagnetic fields associated with the inclined lightning channels in the time domain[J]. Electric Power Components and Systems, 2012, 40(4): 414-438.
[8]  Izadi M, Kadir M Z A A, Hajikhani M. Evaluation of electromagnetic fields due to inclinded lightning channel in presence of ground reflection[J]. Progress in Electromagnetics Research, 2013, 135: 677-694.
[9]  Li D M, Wang C, Liu X H. General time-domain formula for horizontal electric field excited by lightning[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(2): 395-400.
[10]  Cvetic J, Osmokrovic P. Dynamics of lightning discharge during return stroke[J]. IEEE Transactions on Plasma Science, 2009, 37(1): 4-14.
[11]  Tausanovic M, Markovic S, Marjanovic S, et al. Dynamics of a lightning channel corona sheath using a generalized traveling-current-source return stroke model—Theory and calculations[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(3): 646-656.
[12]  Wang J, Yuan P, Zhang H M, et al. The study on the characteristics and particle densities of lightning discharge plasma[J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 2003-2008 (in Chinese). 王杰, 袁萍, 张华明, 等. 闪电放电通道等离子体成分及相关特性的研究[J]. 光谱学与光谱分析, 2008, 28(9): 2003-2008.
[13]  Maslowski G, Rakov V A. Review of recent developments in lightning channel corona sheath research[J]. Atmospheric Research, 2013, 129-130: 117-122.
[14]  Larsson A. The interaction between a lightning flash and an aircraft in flight[J]. Comptes Rendus Physique, 2002, 3(10): 1423-1444.
[15]  Uman M A, Rakov V A. The interaction of lightning with airborne vehicles[J]. Progress in Aerospace Sciences, 2003, 39(1): 61-81.
[16]  Lago F, Gonzalez J J, Freton P, et al. A numerical modelling of an electric arc and its interaction with the anode: part III. Application to the interaction of a lightning strike and an aircraft in flight[J]. Journal of Physics D: Applied Physics, 2006, 39(10): 2294-2310.
[17]  SAE International Aerospace Standards Europe Office. SAE-ARP5414A Aircraft lightning zoning[S]. London, UK: SAE International, 2005.
[18]  Feraboli P, Miller M. Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6-7): 954-967.
[19]  Ogasawara T, Hirano Y, Yoshimura A. Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(8): 973-981.
[20]  Ding N, Zhao B, Liu Z Q, et al. Simulation of ablation damage of composite laminates subjected to lightning strike[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2) : 301-308 (in Chinese). 丁宁, 赵彬, 刘志强, 等. 复合材料层合板雷击烧蚀损伤模拟[J]. 航空学报, 2013, 34(2) : 301-308.
[21]  Duan Z M, Cao K F, Cheng Z G, et al. Lightning protection tests and waveforms for aircraft[J] High Voltage Engineering, 2000, 26(4): 61-63 (in Chinese). 段泽民, 曹凯风, 程振革, 等. 飞机雷电防护试验与波形[J]. 高电压技术, 2000, 26(4): 61-63.
[22]  Wen H, Hou X Y, Wang H. Research on lightning attachment points test on airplane model[J]. High Voltage Engineering, 2006, 32(7): 90-92 (in Chinese). 温浩, 候新宇, 王宏. 飞机模型雷击附着点试验研究[J]. 高电压技术, 2006, 32(7): 90-92.
[23]  SAE International Aerospace Standards Europe Office. SAE-ARP5416 Aircraft lightning test methods[S]. London, UK: SAE International, 2005.
[24]  Chemartin L, Lalande P, Peyrou B, et al. Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints[J]. Journal of Aerospace Lab, 2012(5): 1-15.
[25]  Wang X X, Fan D, Huang J K, et al. Numerical simulation of coupled arc in double electrode tungsten inert gas welding[J]. Acta Physica Sinica, 2013, 62(22): 228101 (in Chinese). 王新鑫, 樊丁, 黄健康, 等. 双钨极耦合电弧数值模拟[J]. 物理学报, 2013, 62(22): 228101.
[26]  Cvetic J, Heidler F, Markovic S, et al. Dynamics of a lightning corona sheath—A constant field approach using the generalized traveling current source return stroke model[J]. Atmospheric Research, 2012, 117: 122-131.
[27]  SAE International Aerospace Standards Europe Office. SAE-ARP5412A Aircraft lightning environment and related test waveforms[S]. London, UK: SAE International, 2005.
[28]  Klemperer C J, Maharaj D. Composite electromagnetic interference shielding materials for aerospace applications[J]. Composite Structures, 2009, 91(4): 467-472.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133