全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

数值模拟填料含量对Cu/PTFE复合材料摩擦性能的影响
Numerical simulation of influence of filler content on tribological properties of Cu/PTFE composites

DOI: 10.13801/j.cnki.fhclxb.20140521.001

Keywords: 复合材料,填料,数值模拟,磨损,转移
composites
,filler,numerical simulation,wear,transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探讨填料含量对Cu/聚四氟乙烯(PTFE)复合材料摩擦磨损的影响, 运用二维颗粒流程序(PFC2D)对PTFE基复合材料在不同含量的Cu颗粒填充条件下与45#钢的摩擦磨损过程进行数值模拟分析, 主要研究了Cu/PTFE复合材料的摩擦转移及磨损问题。模拟结果表明: Cu/PTFE复合材料与45#钢组成摩擦副时, 会在45#钢表面形成一层转移颗粒层, 转移颗粒层的形成能够有效地降低PTFE基复合材料的磨损。Cu颗粒的添加一方面可以通过自身转移的"钉扎"作用促进转移颗粒层的形成, 另一方面由于提高了复合材料的整体强度, 又对转移颗粒层的形成产生了一定的抑制作用。所以添加适量的Cu有利于转移颗粒层的形成, 但Cu含量过高时其作用又会降低。Cu颗粒的加入降低了PTFE基复合材料的磨损量, 且随着Cu含量的增加减磨效果增强。在Cu颗粒的质量分数为50%时, PTFE基复合材料的磨损颗粒数较纯PTFE的减少了近一半。 In order to investigate the influence of filler content on the tribological properties of Cu/polytetrafluoroethene (PTFE) composites, the Particle Flow Code in 2 Dimensions (PFC2D) was employed to simulate and analysis the processes of the friction and wear of PTFE-based composites with different Cu contents sliding against 45# steel. The friction transfer and wear of Cu/PTFE composites were mainly studied. The simulation results show that the transferred particle layer is formed on the surface of 45# steel when Cu/PTFE composites form friction pair with 45# steel. The wear of PTFE-based composites can be reduced effectively by the formation of transferred particle layer. On one hand, the addition of Cu particles can promote the formation of transferred particle layer by "pinning" effect of self-transition. On the other hand, due to the improvement of composite integrated strength, the addition of Cu particles produces an inhibition to the formation of transferred particle layer. Therefore, the moderate addition of Cu is beneficial to the formation of transferred particle layer. However, this effect will be reduced when the content of Cu is too high. Meanwhile, the wear of PTFE-based composites is reduced effectively due to the addition of Cu particles, and antifriction effect becomes better along with the increasing of Cu content. When the mass fraction of Cu particles is 50%, the number of the wear particles of PTFE-based composites is decreased to nearly half of the pure PTFE. 国家自然科学基金(51275144)

References

[1]  Dou L X, Gong L H, Shen J, et al. Effect of composite additives on the forming and stability of transfer films of modified PTFEs[J]. Acta Materiae Compositae Sinica, 2004, 21(2): 65-69 (in Chinese). 豆立新, 龚烈航, 沈健, 等. 复合材料添加剂对改性PTFE的摩擦转移膜的形成和稳定作用[J]. 复合材料学报, 2004, 21(2): 65-69.
[2]  Fillot N, Iordanoff I, Berthier Y. Modelling third body flows with a discrete element method-a tool for understanding wear with adhesive particles[J]. Tribology International, 2006, 40(6): 973-981.
[3]  ?qvist M. Numerical simulations of mild wear using updated geometry with different step size approaches[J]. Wear, 2001, 249(1): 6-11.
[4]  Users' manual for Particle Flow Code in 2 Dimensions (PFC2D)[CP]. Version 3.1. CG Itasca-Minneapolis Minnesota, 2002.
[5]  Bahadur S, Sunkara C. Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO2, ZnO, CuO and SiC[J]. Wear, 2005, 258(9): 1411-1421.
[6]  Xie T, Zhou Z H, Xu Z X, et al. Characteristics of the transfer film and tribological properties of oxide/PTFE composites[J]. Advanced Materials Research, 2013, 631-632: 172-175.
[7]  Xie T, Wan Y Y, Miu P, et al. Dynamic transfer of PTFE three-layer composite materials during friction[J]. Lubrication Engineering, 2010, 35(2): 1-5 (in Chinese). 解挺, 万媛媛, 缪鹏, 等. PTFE三层复合材料摩擦过程的界面动态迁移[J]. 润滑与密封, 2010, 35(2): 1-5.
[8]  Wang J X, Chen Z, Qin D T. Effect of stuffing on the properties of PTFE[J]. Materials for Mechanical Engineering, 2002, 26(10): 35-37 (in Chinese). 王家序, 陈战, 秦大同. 填料对聚四氟乙烯工程塑料改性的影响[J]. 机械工程材料, 2002, 26(10): 35-37.
[9]  Liu S G, Liu H N, Wang S J, et al. Direct shear tests and PFC2D numerical simulation of intermittent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1828-1836 (in Chinese). 刘顺桂, 刘海宁, 王思敬, 等. 断续节理直剪试验与PFC2D数值模拟分析[J]. 岩石力学与工程学报, 2008, 27(9): 1828-1836.
[10]  Aderikha V N, Shapovalov V N. Mechanical and tribological behavior of PTFE-polyoxadiazole fiber composites: Effect of filler treatment[J]. Wear, 2011, 271(5): 970-976.
[11]  Zhang Z Z, Xue Q J, Shen W C, et al. Friction and wear properties of PTFE composites filled by metal[J]. Polymer Materials Science and Engineering, 1999, 15(1): 68-72 (in Chinese). 张招柱, 薛群基, 沈维长, 等. 金属填充PTFE复合材料的摩擦磨损性能研究[J]. 高分子材料科学与工程, 1999, 15(1): 68-72.
[12]  Huang L, Yang R, Guo J J, et al. Friction and wear properties of PTFE-based composites filled with micron and nanometer SiO2 particles[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 82-86 (in Chinese). 黄丽, 杨儒, 郭江江, 等. 微米和纳米SiO2改性聚四氟乙烯的摩擦磨损性能[J]. 复合材料学报, 2004, 21(4): 82-86.
[13]  Sawyer W G, Freudenberg K D, Bhimaraj P, et al. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles[J]. Wear, 2003, 254(5): 573-580.
[14]  Schargott M, Popov V L, Dmitriev A I, et al. Development of surface topography for the rail-wheel contact[J]. Wear, 2008, 265(9): 1542-1548.
[15]  Zhao Y C, Liu X J, Wang W, et al. Study on the interaction of surface topography based on discrete element method[J]. Journal of Hefei University of Technology, 2010(4): 487-490 (in Chinese). 赵永春, 刘小君, 王伟, 等. 基于离散元法的表面形貌相互作用研究[J]. 合肥工业大学学报, 2010(4): 487-490.
[16]  Wang C, Tannant D D, Lilly P A. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 415-424.
[17]  Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
[18]  Zhou J, Chi Y W, Chi Y, et al. Simulation of biaxial test on sand by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 701-704 (in Chinese). 周健, 池毓蔚, 池永, 等. 砂土双轴试验的颗粒流模拟[J]. 岩土工程学报, 2000, 22(6): 701-704.
[19]  Yang D M, Sheng Y, Ye J Q, et al. Discrete element modeling of the microbond test of fiber reinforced composite[J]. Computational Materials Science, 2010, 49(2): 253-259.
[20]  Zhou Z H. Simulation of the transfer process during friction of the PTFE composites[D]. Hefei: Hefei University of Technology, 2013 (in Chinese). 周正华. PTFE基复合材料摩擦转移规律模拟研究[D]. 合肥: 合肥工业大学, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133