|
- 2015
基于层层组装法构建阻燃天然纤维素纤维织物的研究进展
|
Abstract:
利用层层组装(LBL)法构建阻燃天然纤维素纤维织物是基于相反电荷聚电解质的物理吸附作用, 在织物表面交替沉积而成多层膜的一种新型阻燃改性方法。与传统方法相比, LBL法可以在基体与外部环境之间构建阻燃多层膜, 从而直接干扰燃烧过程;尤其是通过对组装条件和过程的调节, 可以方便地控制多层膜的质量、厚度和元素组成, 进而对阻燃性能进行有效调控。总结了近年来国内外基于LBL法构建纳米材料-纳米材料、纳米材料-聚电解质及聚电解质-聚电解质阻燃天然纤维素纤维织物的研究进展, 介绍了本课题组在苎麻织物表面构建氨基化碳纳米管-聚磷酸铵和聚乙烯亚胺-聚磷酸铵膨胀型阻燃涂层方面所做的探索性工作, 展望了其未来的发展趋势。 Layer-by-layer assembly (LBL) is a new kind of method for preparing flame retardant natural cellulosic fiber fabric, which is based on the physical adsorption of oppositely charged polyelectrolytes and multilayer film is formed through alternate deposition on surface of fabric. Compared with traditional methods, LBL method can construct flame retardant multilayer films between the substrate and external environment, so as to inhibit the combustion process directly. In particular, adjusting the assembly conditions and process can change the mass, thickness and elementary composition of the multilayer films conveniently, so as to control the flame retardant properties effectively. Herein, the recent developments in the preparation of nanomaterials-nanomaterials, nanomaterials-polyelectrolyte, polyelectrolyte-polyelectrolyte flame retardant natural cellulosic fiber fabric via LBL method were summarized, and the related works for constructing amino-carbon nanotubes-polyphosphate and polyethyleneimine-polyphosphate intumescent flame retardant coatings on surface of ramie fabric in our lab were also introduced. Furthermore, the outlooks of future developments were discussed. 国家"973计划"(2010CB631105); 先进纺织材料与制备技术教育部重点实验室(浙江理工大学)优秀青年人才培养基金(2012QN08)
[1] | Alongi J, Malucelli G. State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles[J]. Journal of Materials Chemistry, 2012, 22(41): 21805-21809. |
[2] | Tang Z, Wang Y, Podsiadlo P, et al. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering[J]. Advanced Materials, 2006, 18(24): 3203-3224. |
[3] | Yang Z, Wang X, Lei D, et al. A durable flame retardant for cellulosic fabrics[J]. Polymer Degradation and Stability, 2012, 97(11): 2467-2472. |
[4] | Zhang T, Yan H, Peng M, et al. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate[J]. Nanoscale, 2013, 5(7): 3013-3021. |
[5] | Li Y C, Mannen S, Morgan A B, et al. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric[J]. Advanced Materials, 2011, 23(34): 3926-3931. |
[6] | Faruk O, Bledzki A K, Fink H P, et al. Biocomposites reinforced with natural fibers: 2000-2010[J]. Progress in Polymer Science, 2012, 37(11): 1552-1596. |
[7] | Srivastava S, Kotov N A. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires[J]. Accounts of Chemical Research, 2008, 41(12): 1831-1841. |
[8] | Li Y C, Mannen S, Schulz J, et al. Growth and fire protection behavior of POSS-based multilayer thin films[J]. Journal of Materials Chemistry, 2011, 21(9): 3060-3069. |
[9] | Kalia S, Kaith B S, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review[J]. Polymer Engineering & Science, 2009, 49(7): 1253-1272. |
[10] | Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics [J]. Composites Science and Technology, 2003, 63(9): 1259-1264. |
[11] | Price D, Horrocks A R, Akalin M, et al. Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air[J]. Journal of Analytical and Applied Pyrolysis, 1997, 40-41: 511-524. |
[12] | Tsafack M J, Levalois-Grützmacher J. Flame retardancy of cotton textiles by plasma-induced graft-polymerization (PIGP)[J]. Surface and Coatings Technology, 2006, 201(6): 2599-2610. |
[13] | Lu X C, Yan H Q, Wang H Q, et al. Preparation and properties of flame retarded ramie/phenolic resin composites[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 1-5 (in Chinese). 鲁小城, 闫红强, 王华清, 等. 阻燃苎麻/酚醛树脂复合材料的制备及性能[J]. 复合材料学报, 2011, 28(3): 1-5. |
[14] | Lu X C, Yan H Q, Fang Z P. Flame retarding modification of ramie/phenolic resin composites [J]. Journal of Materials Engineering, 2010(Suppl.1): 53-56 (in Chinese). 鲁小城, 闫红强, 方征平. 苎麻/酚醛树脂复合材料的阻燃改性[J]. 材料工程, 2010(增刊1): 53-56. |
[15] | Alongi J, Ciobanu M, Malucelli G. Sol-gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability[J]. Cellulose, 2011, 18(1): 167-177. |
[16] | Kozowski R, Wadyka-Przybylak M. Flammability and fire resistance of composites reinforced by natural fibers[J]. Polymers for Advanced Technologies, 2008, 19(6): 446- 453. |
[17] | Lan H Y, Zhang Y H. The properties and applications of bast fibers[J]. Shanghai Wool & Jute Journal, 2009(3): 1-5 (in Chinese). 兰红艳, 张延辉. 麻类纤维的性能及其应用[J]. 上海毛麻科技, 2009(3): 1-5. |
[18] | Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: Chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6): 3479-3500. |
[19] | Rong M Z, Zhang M Q, Liu Y, et al. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites[J]. Composites Science and Technology, 2001, 61(10): 1437-1447. |
[20] | Fuqua M A, Huo S, Ulven C A. Natural fiber reinforced composites[J]. Polymer Reviews, 2012, 52(3-4): 259-320. |
[21] | Hu L, Pasta M, La Mantia F, et al. Stretchable, porous, and conductive energy textiles[J]. Nano Letters, 2010, 10(2): 708-714. |
[22] | Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites[J]. Science, 1997, 277(5330): 1232-1237. |
[23] | Yang C Q, Wu W. Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: Part I. The chemical reactions[J]. Fire and Materials, 2003, 27(5): 223-237. |
[24] | Alongi J, Ciobanu M, Malucelli G. Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes[J]. Carbohydrate Polymers, 2011, 85(3): 599-608. |
[25] | Alongi J, Ciobanu M, Tata J, et al. Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol-gel treatments[J]. Journal of Applied Polymer Science, 2011, 119(4): 1961-1969. |
[26] | Yuan H, Xing W, Zhang P, et al. Functionalization of cotton with UV-cured flame retardant coatings[J]. Industrial & Engineering Chemistry Research, 2012, 51(15): 5394-5401. |
[27] | Opwis K, Wego A, Bahners T, et al. Permanent flame retardant finishing of textile materials by a photochemical immobilization of vinyl phosphonic acid[J]. Polymer Degradation and Stability, 2011, 96(3): 393-395. |
[28] | Li Y C, Schulz J, Grunlan J C. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability[J]. ACS Applied Materials & Interfaces, 2009, 1(10): 2338-2347. |
[29] | Alongi J, Carosio F, Malucelli G. Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: Flammability and combustion behaviour[J]. Cellulose, 2012, 19(3): 1041-1050. |
[30] | Huang G, Liang H, Wang X, et al. Poly(acrylic acid)/clay thin films assembled by layer-by-Layer deposition for improving the flame retardancy properties of cotton[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12299-12309. |
[31] | Zhang T, Yan H, Wang L, et al. Controlled formation of self-extinguishing intumescent coating on ramie fabric via layer-by-layer assembly[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6138-6146. |
[32] | John M J, Thomas S. Biofibres and biocomposites[J]. Carbohydrate Polymers, 2008, 71(3): 343-364. |
[33] | Laufer G, Carosio F, Martinez R, et al. Growth and fire resistance of colloidal silica-polyelectrolyte thin film assemblies[J]. Journal of Colloid and Interface Science, 2011, 356(1): 69-77. |
[34] | Li Y C, Schulz J, Mannen S, et al. Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric[J]. ACS Nano, 2010, 4(6): 3325-3337. |
[35] | Carosio F, Alongi J, Malucelli G. Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends[J]. Carbohydrate Polymers, 2012, 88 (4): 1460-1469. |
[36] | Huang G, Yang J, Gao J, et al. Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12355-12366. |
[37] | Laufer G, Kirkland C, Morgan A B, et al. Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton[J]. Biomacromolecules, 2012, 13(9): 2843-2848. |
[38] | Wang L, Zhang T, Yan H, et al. Modification of ramie fabric with a metal-ion-doped flame-retardant coating[J]. Journal of Applied Polymer Science, 2013, 129(5): 2986-2997. |