|
- 2015
分级多孔壳聚糖/聚乳酸复合支架的制备及骨修复性能
|
Abstract:
为了仿生莲藕内部的贯穿大孔结构, 以生物相容性好的壳聚糖(CS)作为基质材料, 利用冰粒致孔、石蜡模具和冰模具成型3种成型方法制备了分级多孔CS支架材料, 然后与力学强度较高的聚乳酸(PLLA)复合, 制备网络互穿CS/PLLA复合支架。 通过SEM、压缩强度测试和兔股骨髁骨缺损模型对CS/PLLA复合材料的形貌、力学强度和骨修复性能进行了表征。结果表明: 利用冰模具制备的CS/PLLA复合支架能可控、批量制备, 具有微米-毫米分级多孔结构, 大孔孔径约为2 mm, 内部均匀分布着孔径约为60 μm的贯穿微孔, 并在微孔内形成密集的PLLA絮状网络结构。干态复合材料的压缩强度和模量分别比纯CS支架的提高了6倍和15倍。体内植入实验结果表明, CS/PLLA复合材料能够促进骨缺损的愈合, 并随着新骨的形成, 复合材料逐渐被降解吸收。 To mimic the internal large pore structure of lotus, chitosan (CS) which has good biocompatibility was used as matrix material, and three molding methods, including porogen ice, wax molding and ice molding, were used to fabricate the hierarchical porous CS scaffold materials. Then the materials were combined with polylactic acid (PLLA) which has good mechanical intensity to form CS/PLLA composite scaffolds with interpenetrating network. SEM, compressive strength test and rabbit femoral bone defect model were used to characterize the morphology, mechanical strength and bone regenerability of CS/PLLA composites. The results show that the CS/PLLA composite scaffolds fabricated by ice mould can be produced controllably in batch, and possess micron-millimeter hierarchical porous structure. The diameter of macropores is about 2 mm, micropores whose diameter is about 60 μm distribute uniformly internally, and PLLA floc network structure is formed in the micropores. Compressive strength and modulus of dry composite are improved 6 times and 15 times respectively than that of pure CS scaffolds. Implant test results show that CS/PLLA composites can promote the healing of bone defects, and the composites is gradually absorbed with the formation of new bone. 中央高校基本科研业务费(21612320); 广州市珠江科技新星专项(2011J2200037); 广州市科技计划项目(12C32071662); 暨南大学第一临床医学院科研培育专项基金(2013208)
[1] | Ashammakhi N, Ndreu A, Yang Y, et al. Nanofiber-based scaffolds for tissue engineering[J]. European Journal of Plastic Surgery, 2012, 35(2): 135-149. |
[2] | Li B, Li L H, Zhou C R. Bio-inspired fabrication of polymer composite scaffolds with chitosan network inside the pore channels[J]. Applied Mechanics and Materials. 2012, 140: 38-42. |
[3] | Zhao M Y, Li L H, Sun G D, et al. Biocompatibility of chitosan/poly (L-lactic acid) composite scaffolds with three-dimensional honeycomb patterned structure[J]. Applied Mechanics and Materials, 2012, 140: 29-33 |
[4] | Zhang Y, Venugopal J R, El-Turki A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering[J]. Biomaterials, 2008, 29(32): 4314-4322. |
[5] | Sultana N, Khan T H, Mokhtar M, et al. Composite scaffolds based on poly (caprolactone) and chitosan for bone tissue regeneration[J]. Advanced Science Letters, 2013, 19(1): 162-165. |
[6] | Guo C, Dong Y S, Lin P H, et al. Study on fabrication of poly (lactic acid) porous scaffolds[J]. Journal of Southeast University: Natural Science Edition, 2004(4): 495-499 (in Chinese). 郭超, 董寅生, 林萍华, 等. 聚乳酸多孔支架的制备研究[J]. 东南大学学报: 自然科学版, 2004(4): 495-499. |
[7] | Moutos F T, Freed L E, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage[J]. Nature Materials, 2007, 6(2): 162-167. |
[8] | Sajc L, Grubisic D, Vunjak-Novakovic G. Bioreactors for plant engineering: an outlook for further research[J]. Biochemical Engineering Journal, 2000, 4(2): 89-99. |
[9] | Zhao M Y, Li L H, Zhou C R, et al. Analysis of cell behaviors in chitosan sponges with hierarchical open pores[J]. Chinese Journal of Materials Research, 2011, 25(3): 243-248 (in Chinese). 赵名艳, 李立华, 周长忍, 等. 多级开孔壳聚糖海绵的细胞行为分析[J]. 材料研究学报, 2011, 25(3): 243-248. |
[10] | Zhao M Y, Li L H, Li X, et al. Three-dimensional honeycomb-patterned chitosan/poly (L-lactic acid) scaffolds with improved mechanical and cell compatibility[J]. Journal of Biomedical Materials and Research: Part A, 2011, 98(3): 434-441. |
[11] | Li Z, Ramay H R, Hauch K D, et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering[J]. Biomaterials, 2005, 26(18): 3919-3928. |
[12] | Saito E, Liao E E, Hu W W, et al. Effects of designed PLLA and 50∶50 PLGA scaffold architectures on bone formation in vivo[J]. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7(2): 99-111. |
[13] | Hu X L, Xie P H, Lin Q, et al. Bioabsorbable polylactic acid fiber reinforced chitosan composite rod for biomedical materials[J]. Journal of Xiamen University: Natural Science Edition, 2010, 49(2): 293-296 (in Chinese). 胡晓兰, 谢鹏辉, 林勤, 等. 生物医用聚乳酸纤维增强壳聚糖棒材[J]. 厦门大学学报: 自然科学版, 2010, 49(2): 293-296. |
[14] | Zhao M Y, Li L H, Sun G D, et al. Biocompatibility of chitosan/poly (L-Lactic Acid) composite scaffolds with three-dimensional honeycomb patterned structure[J]. Applied Mechanics and Materials, 2012, 140: 29-33. |
[15] | Mehdizadeh H, Sumo S, Bayrak E S, et al. Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds[J]. Biomaterials, 2013, 34(12): 2875-2887. |
[16] | Jaiswal A K, Kadam S S, Soni V P, et al. Improved functionalization of electrospun PLLA/gelatin scaffold by alternate soaking method for bone tissue engineering[J]. Applied Surface Science, 2013, 268: 477-488. |
[17] | Guarino V, Causa F, Taddei P, et al. Polylactic acid fiber-reinforced polycaprolactone scaffolds for bone tissue engineering[J]. Biomaterials, 2008, 29(27): 3662-3670. |
[18] | Wright-Charlesworth D D, Miller D M, Miskioglu I, et al. Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months[J]. Journal of Biomedical Materials Research Part A, 2005, 74(3): 388-396. |