|
- 2015
石墨烯-多壁碳纳米管协同增强环氧树脂复合材料的低温力学性能
|
Abstract:
为了提高环氧树脂的低温力学性能,采用石墨烯与多壁碳纳米管(MWCNTs)协同改性环氧树脂,系统研究了石墨烯-MWCNTs /环氧树脂复合材料的室温(RT)和低温(77 K)力学性能。结果表明:当石墨烯的质量分数为0.1wt%,MWCNTs的质量分数为0.5wt%时, 纳米填料的加入可同时改善环氧树脂的低温拉伸强度、弹性模量和冲击强度;在此最佳含量下, 石墨烯-MWCNTs/环氧树脂复合材料在RT和77 K时的拉伸强度皆达到最大值, 比纯环氧树脂的拉伸强度分别提高了11.04% 和 43.78%。石墨烯和MWCNTs能协同提高环氧树脂的低温力学性能。 In order to enhance the cryogenic mechanical properties of epoxy, graphene and multi-walled carbon nanotubes (MWCNTs) were used to modify epoxy synergistically. Room temperature (RT) and cryogenic (77 K) mechanical properties of graphene-MWCNTs/epoxy composites were systematically studied. The results show that simultaneous enhancements in cryogenic tensile strength, elastic modulus and impact strength can be achieved with 0.1wt% graphene and 0.5wt% MWCNTs. At this optimal formulation, the tensile strength of graphene-MWCNTs/epoxy composites reaches the highest value at both RT and 77 K, and is increased by 11.04% and 43.78% respectively, compared to pure epoxy. The cryogenic mechanical properties of epoxy can be synergistically enhanced by graphene and MWCNTs. 北京市自然科学基金(2122055); 浙江省教育厅科研项目(Y201330172); 浙江省纺织工程重点学科-高效节能短流程纺织先进加工技术 (2010R5012); 嘉兴市科技计划(2013AY11016)
[1] | Li Y Q, Yang T Y, Yu T, et al. Synergistic effect of hybrid carbon nantube-graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites[J]. Journal of Materials Chemistry, 2011, 21(29): 10844-10851. |
[2] | Yang J P, Yang G, Xu G S, et al. Cryogenic mechanical behaviors of MMT/epoxy nanocomposites[J]. Composites Science and Technology, 2007, 67(14): 2934-2940. |
[3] | Isik I, Yilmazer U, Bayram G. Impact modified epoxy/montmorillonite nanocomposites: synthesis and characterization[J]. Polymer, 2003, 44(20): 6371-6377. |
[4] | Fu S Y, Lauke B, Mai Y W. Science and engineering of short fibre reinforced polymer composites[M]. Cambridge: Woodhead Ltd., 2009: 119-159. |
[5] | Huang C J, Fu S Y, Zhang Y H, et al. Cryogenic properties of SiO2/epoxy nanocomposites[J]. Cryogenics, 2005, 45(6): 450-454. |
[6] | Yang J P, Yang G, Xu G S, et al. Cryogenic mechanical behaviors of MMT/epoxy nanocomposites[J]. Composites Science and Technology, 2007, 67(14): 2934-2940. |
[7] | Yang J P, Chen Z K, Yang G, et al. Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer[J]. Polymer, 2008, 49(13-14): 3168-3175. |
[8] | Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. |
[9] | The Standardization Technical Committee of Fiber Reinforced Plastic. GB/T 2567-2008 General rules of the resin cast body test method[S]. Beijing: Standards Press of China, 2008 (in Chinese). 全国纤维增强塑料标准化技术委员会.GB/T 2567-2008 树脂浇铸体试验方法总则[S].北京: 中国标准出版社, 2008. |
[10] | Lee D Y, Lee M H, Kim K J, et al. Effect of multiwalled carbon nanotube (M-CNT) loading on M-CNT distribution behavior and the related electromechanical properties of the M-CNT dispersed ionomeric nanocomposites[J]. Surface & Coatings Technology, 2005, 200(5-6): 1920-1925. |
[11] | Chen W X, Chen W L, Xu Z D, et al. Characteristics of carbon nanotubes and high-quality composites [J]. Acta Materiae Compositae Sinica, 2001, 18(4): 1-5 (in Chinese). 陈卫祥, 陈文录, 徐铸德, 等. 碳纳米管的特性及其高性能的复合材料[J]. 复合材料学报, 2001, 18(4): 1-5. |
[12] | Nair A, Roy S. Modeling of permeation and damage in graphite/epoxy laminates for cryogenic fuel storage[J]. Composites Science and Technology, 2007, 67(11-12): 2592-2605. |
[13] | Ju J, Pickle B D, Morgan R J, et al. An initial and progressive failure analysis for cryogenic composite fuel tank design[J]. Journal of Composite Materials, 2008, 42(6): 569-592. |
[14] | Wang X B, Li J Q, Luo Y J. Preparation and conductivity property of graphene aerogel/epoxy composites[J]. Acta Materiae Compositae Sinica 2013, 30(6): 1-6 (in Chinese). 王学宝, 李晋庆, 罗运军. 石墨烯气凝胶/环氧树脂复合材料的制备及导电性能[J]. 复合材料学报, 2013, 30(6): 1-6. |
[15] | Ueki T, Nojima K, Asano K, et al. Toughening of epoxy resin systems for cryogenic use[J]. Advances in Cryogenic Engineering Materials, 1998, 44: 277-283. |
[16] | Chen Z K, Yang J P, Ni Q Q, et al. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties[J]. Polymer, 2009, 50(19): 4753-4759. |
[17] | Yang G, Zheng B, Yang J P, et al. Preparation and cryogenic mechanical properties of epoxy resins modified by poly(ethersulfone)[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(2): 612-624. |
[18] | Fu S Y, Pan Q Y, Huang C J, et al. A preliminary study on cryogenic mechanical properties of epoxy blend matrices and SiO2/epoxy nanocomposites[J]. Key Engineering Materials, 2006, 312: 211-216. |
[19] | Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. |
[20] | Zeinalipour-Yazdi C D, Christofides C. Linear correlation between binding energy and Young's modulus in graphene nanoribbons[J]. Journal of Applied Physics, 2009,106(5): 054318. |
[21] | Rafiee M A, Rafiee J, Srivastava I, et al. Fracture and fatigue in graphene nanocomposites[J]. Small, 2010, 6(2): 179-183. |
[22] | American Society for Testing and Materials International. ASTM D638-10 Standard test method for tensile properties of plastics[S]. Philadelphia: ASTM International, 2010. |
[23] | Yang G, Fu S Y, Yang J P. Preparation and mechanical properties of modified epoxy resins with flexible diamines[J]. Polymer, 2007, 48(1): 302-310. |
[24] | Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146: 351-355. |
[25] | Shen X J, Liu Y, Xiao H M, et al. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins[J]. Composites Science and Technology, 2012, 72(13): 1581-1587. |
[26] | Yang S Y, Lin W N, Huang Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon, 2011, 49(3): 793-803. |
[27] | Nguyen D A, Lee Y R, Raghu A V, et al. Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet[J]. Polymer International, 2009, 58(4): 412-417. |
[28] | Wang L, Wang K, Chen L. Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(11): 1890-1896. |