|
- 2015
非连续增强金属基复合材料剧烈塑性变形行为研究进展
|
Abstract:
综述了非连续增强金属基复合材料剧烈塑性变形(SPD)行为的研究进展,系统阐述了等径弯曲通道变形(ECAP)、高压扭转(HPT)、多向锻造(MF)、累积叠轧(ARB) 和循环挤压压缩(CEC)5种SPD的加工原理和方法。集中介绍了这些方法在铝基、镁基、铜基和钛基等金属基复合材料方面应用的研究进展。重点介绍了金属基复合材料SPD的微观组织演化和变形力学行为,详细阐明了金属基复合材料SPD机制以及超细晶形成机理,指出了金属基复合材料在SPD中存在的深层次问题及发展趋势,展望了利用SPD方法制备超细晶非连续增强金属基复合材料的应用前景。 Research progress was reviewed on the severe plastic deformation (SPD) behaviors of discontinuously reinforced metal matrix composites. Five kinds of SPD processing principle and methods, including equal channel angular pressing (ECAP), high pressure torsion (HRT), multiple forging (MF), accumulative roll bonding (ARB) and cyclic extrusion compression (CEC), were systematically described.The applications of these methods in aluminum matrix, magnesium matrix, copper matrix and titanium matrix composites, etc. were introduced intensively. The special attention was paid to the microstructure evolution and deformation mechanical behavior of metal matrix composites by SPD, and the SPD mechanism and formation mechanism in the preparation of ultrafine-grain composites were also discussed in details. Moreover, the existing problems and developing trend of metal matrix composites in SPD process were stated briefly, and the application of SPD method for preparing discontinuously reinforced metal matrix composites with ultrafine-grain was prospected. 国家自然科学基金(51371114);国家"973计划"(2012CB619600);中国博士后基金(2014M550235);上海市博士后基金(14R21410900)
[1] | Zhang Y Q, Jiang S Y, Hu L, et al. Deformation mechanism of NiTi shape memory alloy subjected to severe plastic deformation at low temperature[J]. Materials Science and Engineering: A, 2013, 559: 607-614. |
[2] | Zhang Y. Investigation on microstructure &mechnical properties of typical metals after severe plastic deformation[D]. Nanjing: Nanjing University of Science & Technology, 2010 (in Chinese). 张悦. 典型金属的剧烈塑性变形与组织性能演变[D]. 南京: 南京理工大学, 2010. |
[3] | Gutkin M Y, Ovid’ko I A, Skiba N V. Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials[J]. Acta Materialia, 2003, 51(14): 4059-4071. |
[4] | Zhang C J. High temperature deformation behavior and microstructure and mechanical properties of (TiB+TiC)/Ti composite[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). 张长江. (TiB+TiC)/Ti复合材料高温变形行为及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
[5] | Deng K K, Wang C J, Wang X J. Microstructure, mechanical properties and strengthening mechanism of SiCp/AZ91 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 388-395 (in Chinese). 邓坤坤, 王翠菊, 王晓军. SiCp/ZA91复合材料的显微组织、力学性能及强化机制[J]. 复合材料学报, 2014, 31(2): 388-395. |
[6] | Li Y, Zhang Z, Vogt R, et al. Boundaries and interfaces in ultrafine grain composites[J].Acta Materialia, 2011, 59(19): 7206-7218. |
[7] | Mani B, Paydar M H. Application of forward extrusion-equal channel angular pressing (FE-ECAP) in fabrication of aluminum metal matrix composites[J]. Journal of Alloys and Compounds, 2010, 492(1-2): 116-121. |
[8] | He X M, Zhu X Y, Dong J, et al. Study on grain refinement mechanism for commercial pure titanium processed by severe plastic deformation[J]. Materials & Heat Treatment, 2009, 38(22): 56-63 (in Chinese). 何晓梅, 朱晓雅, 董洁, 等. 剧烈塑性变形条件下工业纯钛晶粒细化机理研究[J]. 材料热处理技术, 2009, 38(22): 56-63. |
[9] | Park K T, Hwang D Y, Lee Y K, et al. High strain rate superplasticity of submicrometer grained 5083Al alloy containing scandium fabricated by severe plastic deformation[J]. Materials Science and Engineering: A, 2003, 341(1-2): 273-281 |
[10] | Tian Y Z. Comparison of microstructures and mechanical properties of a Cu-Ag alloy processed using different severe plastic deformation modes[J]. Materials Science and Engineering: A, 2011, 528(13-14): 4331-4336. |
[11] | Botta W J. H-sorption properties and structural evolution of Mg processed by severe plastic deformation[J]. Journal of Alloys and Compounds, 2013, 580(1): 187-191. |
[12] | Semenova I P, Salimgareeva G K, Latysh V V, et al. Enhanced fatigue strength of commercially pure Ti processed by severe plastic deformation[J]. Materials Science and Engineering: A, 2009, 503(1-2): 92-95. |
[13] | Tian J W. Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation[J]. Materials Science and Engineering: A, 2008, 493(1-2): 176-183. |
[14] | Cheng Y Q, Chen Z H, Xia W J, et al. Research and development of severe plastic deformation technique[J]. Materials Review, 2006, 20(Suppl.2): 245-248 (in Chinese). 程永奇, 陈振华, 夏伟军, 等. 大塑性变形技术的研究与发展现状[J]. 材料导报, 2006, 20(增刊2): 245-248. |
[15] | Kang Z X, Peng Y H, Lai X M, et al. Research status and application prospect of ultrafine grained and/or nano-crystalline metallic materials processed by severe plastic deformation[J]. The Chinese Journal of Nonferrous Metal, 2010, 20(4): 587-596 (in Chinese). 康志新, 彭勇辉, 赖晓明, 等. 剧塑性变形制备超细晶纳米晶结构金属材料的研究现状和应用展望[J]. 中国有色金属学报, 2010, 20(4): 587-596. |
[16] | Lv W J, Guo X L, Wang L Q, et al. Progress on in-situ discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials, 2014, 34(4): 139-146 (in Chinese). 吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34(4): 139-146. |
[17] | Lin W S, Li Y Y. Development of particulate reinforced steel matrix composite[J]. Powder Metallurgy Industry,2001, 11(5): 25-29 (in Chinese). 林文松, 李元元. 颗粒强化钢铁基复合材料的研究现状与展望[J]. 粉末冶金工业, 2001, 11(5): 25-29. |
[18] | Dammak M, Gaspérini M, Barbier D. Microstructure evolution of iron based metal matrix composites submitted to simple shear[J]. Materials Science and Engineering: A, 2014, 616: 123-131. |
[19] | Chen Q, Shu D Y, Hu C K, et al. Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure[J]. Materials Science and Engineering: A, 2012, 541: 98-104. |
[20] | Reihanian M, Bagherpour E, Paydar M H. On the achievement of uniform particle distribution in metal matrix composites fabricated by accumulative roll bonding[J]. Materials Letters, 2013, 91: 59-62. |
[21] | Chen Y J, Wang Q D, Roven H J. et al. Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression[J]. Journal of Alloys and Compounds, 2008, 462(1-2): 192-200. |
[22] | Segal V M. Engineering and commercialization of equal channel angular extrusion (ECAE)[J]. Mateirals Science and Engineering: A, 2004, 386(1-2): 269-276. |
[23] | Stolyarov V V, Zhu Y T, Alexandrov I V, et al. Grian refinement and properties of true Ti processed by warm ECAP and cold rolling[J]. Materials Science and Enginering: A, 2003, 343(1-2): 43-49. |
[24] | Wadsack R, Pippan R, Schedler B. Structural refinements of chromium by severe plastic deformation[J]. Fusion Engineering and Design, 2003, 66-68: 265-269. |
[25] | Imayev R M, Salishchev G A,Senkov O N, et al. Low-temperature superlasticity of titanium aluminides[J]. Materials Science & Engineering: A, 2001, 300(1-2): 263-277. |
[26] | Richert J, Richert M. A new method for unlimited deformation of metals and alloys[J]. Aluminium, 1986, 8: 604. |
[27] | Richert M, Stuwe H P, Zehetbauer M J, et al. Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression[J]. Materials Science and Engineering: A, 2003, 355(1-2): 180-185. |
[28] | Guo W, Wang Q D, Ye B, et al. Microstructural refinement and homogenization of Mg-SiC nanocomposites by cyclic extrusion compression[J].Materials Science and Engineering:A, 2012, 556: 267-270. |
[29] | Wang K D, Chang L L, Wang Y N, et al. Preparation of Mg-AZ31 based composites with Ti particles by friction stir processing[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(3): 418-423 (in Chinese). 王开东, 常丽丽, 王轶农, 等. 搅拌摩擦加工技术制备Ti颗粒增强AZ31镁基复合材料[J]. 中国有色金属学报, 2009, 19(3): 418-423. |
[30] | Ma Z Y, Liu Z Y, Zhang Q, et al. Fabrication of metal matrix composite via friction stir processing[C]//Proceeding of the 1st International Joint Symposium on Joining and Welding. 2013: 395-399. |
[31] | Humphreys F J, Miller W S, Djazeb M R. Microstructural development during thermo-mechanical processing of particulate metal-matrix composites[J]. Materials Science & Technology, 1990, 6(11): 1157-1166. |
[32] | Han B Q, Langdon T G. Achieving enhanced tensile ductility in an Al-6061 composite processed by severe plastic deformation[J]. Materials Science and Engineering: A, 2005, 410-411: 430-434. |
[33] | Xia S H. Investigation on ductilization by composite of micro-size/ultrafine-grained microstructure[D]. Nanjing: Nanjing University of Science & Technology, 2010 (in Chinese). 夏少华. 微米晶/超细晶复合增塑及其机制研究[D]. 南京: 南京理工大学, 2010. |
[34] | Schuh C, Dunand D C. Load transfer during transformation super-plasticity of Ti6Al4V/TiB whisker-reinforced composites[J]. Scripta Materialia, 2001, 45(6): 631-638. |
[35] | Watanabe H, Mukai T, Mabuchi M, et al. Superplastic deformation mechanism in powder metallurgy magnesium alloys and composites[J].Acta Materialia, 2001, 49(11): 2027-2037。 |
[36] | Lu C, Tieu K, Wexler D. Significant enhancement of bond strength in the accumulative roll bonding process using nano-sized SiO2 particles[J]. Journal of Materials Processing Technology, 2009, 209(10): 4830-4834. |
[37] | Alexandrov I V, Zhu Y T, Lowe T C, et al. Microstructures and properties of nanocomposites obtained through SPTS con-solidation of powders[J]. Metallurgical and Materials Transactions A, 1998, 29(9): 2553-2557. |
[38] | Liu C Y. Research of aluminum matrix composites prepared by accumulative roll bounding[D]. Qinhuangdao: Yanshan University, 2013 (in Chinese). 刘崇宇. 累积叠轧焊接法制备铝基复合材料的研究[D]. 秦皇岛: 燕山大学, 2013. |
[39] | Guo W. Study on microstructure and properties of magnesium matrix composite fabricated by repeated compression severe plastic deformation[D]. Shanghai: Shanghai Jiao Tong University, 2013 (in Chinese). 郭炜. 反复压缩大塑性变形制备镁基复合材料的组织和性能研究[D]. 上海: 上海交通大学, 2013. |
[40] | Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science[J]. Acta Materialia, 2013, 61(3): 782-817. |
[41] | Alizadeh M, Salahinejad E. A comparative study on metal matrix composite fabricated by conventional and cross accumulative roll bonding processes[J]. Journal of Alloys and Compounds, 2014, 620(25): 180-184. |
[42] | Wang J C, You X Q, Zheng Y C, et al. Research and development status of partichlate reinforced metal matrix composites[J]. Cemented Carbide, 2003, 20(1): 51-55 (in Chinese). 王基才, 尤显卿, 郑玉春, 等. 颗粒增强金属基复合材料的研究现状及展望[J]. 硬质合金, 2003, 20(1): 51-55. |
[43] | Guo W, Wang Q D, Peng J G, et al. Research and development prospects of ultrafine-grained materials fabricated by severe plastic deformation[J]. Forging & Stamping Technology, 2010, 35(1): 4-8 (in Chinese). 郭炜, 王渠东, 彭建国, 等. 大塑性变形制备超细晶复合材料的研究进展[J]. 锻压技术, 2010, 35(1): 4-8. |
[44] | Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science, 2006, 51(7): 881-981. |
[45] | Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications[J]. Progress in Materials Science, 2008, 53(6): 893-979. |
[46] | Ramu G, Bauri R. Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-SiCp composite[J]. Materials Design, 2009, 30(9): 3554-3559. |
[47] | Wang G S, Fan G H, Geng L, et al. Microstructure evolution and mechanical properties of TiB2/Cu composites processed by equal channel angular pressing at elevated temperature[J]. Materials Science and Engineering: A, 2013, 571: 144-149. |
[48] | Ma D Y, Wang J T, Xu K W. Equal channel angular pressing of a SiCw reinforced aluminum based composite[J]. Materials Letters, 2002, 56(6): 999-1002. |
[49] | Arab M S, Mahallawy N E, Shehata F, et al. Refining SiCp in reinforced Al-SiC composites using equal-channel angular pressing[J].Materials and Design, 2014, 64: 280-286. |
[50] | Islamgaliev R K, Buchgraber W, Kolobov Y R, et al. Deformation behavior of Cu-based nanocomposite processed by severe plastic deformation[J]. Materials Science and Engineering: A, 2001, 319-321: 872-876. |
[51] | Mishra R S, Valiev R Z, Mcfadden S X, et al. Severe plastic deformation processing and high strain rate superplasticity in an aluminum matrix composite[J]. Scripta Materialia, 1999, 40(10): 1151-1155. |
[52] | Jensen D J, Hansen N, Humphreys F J. Effect of metallurgical parameters on the textural development in fcc metals and alloys[C]//Proceedings of Icotom 8 International Conference on Textures of Materials. 1987: 431-444. |
[53] | He C L, Wang J M, Cai Q K. Effects of particle size and volume fraction on extrusion texture of SiCp/Al metal matrix composites[J]. Advanced Engineering Materials, 2011, 194-196: 1437-1441. |
[54] | Jiang X, Galano M, Audebert F. Extrusion textures in Al, 6061 alloy and 6061/SiCp nanocomposites[J]. Materials Characterization, 2014, 88: 111-118. |
[55] | Jamaati R, Toroghinejad M R, Hoseini M, et al. Texture development in Al/Al2O3 MMCs produced by anodizing and ARB processes[J]. Materials Science and Engineering: A, 2011, 528(10-11): 3573-3580. |
[56] | Valiev R Z. Paradoxes of severe plastic deformation[J]. Advanced Engineering Materials, 2003, 5: 296-301. |
[57] | Schuh C, Dunand D C. Transformation superplasticity of Ti6Al4V and Ti6Al4V/TiC composites at high stresses[J]. Superplasticity in Advanced materials, 2001, 357-359: 177-182. |
[58] | Stowell M J, Livesey D W, Ridley N. Cavity coalescence in superplastic deformation[J]. Acta Metallurgica Sinica, 1984, 32(1): 3235-3242. |
[59] | Li F, Lin L, Tong X, et al. Superplasticity of magnesium-based alloy and its composites[J]. Forging, 2003, 152(17): 455-459 (in Chinese). 李锋, 林立, 童晓, 等. 镁合金及其复合材料超塑性的研究现状[J]. 铸造, 2003, 152(17): 455-459. |
[60] | Zhang Z. The preparation of nano-Al2O3p/2024 composite material and repeated upsetting and extrusion[D]. Hunan: Hunan University, 2012 (in Chinese). 张政. 纳米Al2O3p/2024复合材料的制备及其往复鐓-挤变形[D]. 湖南: 湖南大学, 2012. |
[61] | Huang J Y, Zhu Y T, Jiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[J]. Acta Materialia, 2001, 49(9): 1497-1505. |
[62] | Kim I, Kim J, Shin D H, et al. Effect of equal channel angular pressing on deformation structure of pure Ti[J]. Materials Science and Enginering: A, 2003, 342(1-2): 302-308. |
[63] | Tsuji N, Shiotuki K, Saito Y, et al.Super plasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding[J].Materials Transactions-Japan Institute of Metals, 1999, 40(8): 765-771. |
[64] | Wang Q D, Chen Y J, Zhang L J, et al. Microstructure and mechanical properties of AZ31-01 5%Si alloy processed by ECAP[J].Transactions of Nonferrous Metals Society of China, 2006, 16(Suppl.3): 1660-1663. |
[65] | Sabirov I, Kolednik O, Pippan R. Homogenization of metal matrix composites by high pressure torsion[J]. Metallurgical and Materials Transactions A, 2005, 36(10): 2861-2870. |
[66] | Yoo S J, Han S H, Kim W J. Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube containing aluminum powders[J].Scripta Materialia, 2012, 67(2):129-132. |
[67] | Alizadeh M, Paydar M H, Terada D, et al. Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process[J]. Materials Science and Engineering: A, 2012, 540: 13-23. |