玻璃纤维毡增强聚丙烯复合材料的冷热循环疲劳特性
, PP. 11-14
Keywords: 玻璃纤维,聚丙烯,玻璃纤维毡增强热塑性复合材料,冷热循环疲劳
Abstract:
通过测定玻璃纤维毡增强聚丙烯复合材料在不同温度区间内经冷热循环后的弯曲性能和动态力学性能以及玻璃纤维增强聚丙烯复合体系经冷热循环后界面剪切强度的变化,研究了该材料的冷热循环疲劳特性。结果表明,在一定温度区间内的冷热循环会对玻璃纤维毡增强聚丙烯的界面造成损伤,使材料的力学性能下降;随着冷热循环温度区间温差的增大、冷端温度的降低、循环次数的增多,形成的热应力对材料的界面损伤越严重;不同的复合体系由于其界面松弛热应力的能力不同,在同样条件下的冷热循环过程中,界面所受到的损伤程度有差异。
References
[1] | 张以康. 玻璃毡增强热塑性复合材料(GM P) 综述[J]. 玻璃钢,1994, 1: 26235.
|
[2] | Amanda Weaver Azdel invests in GMT for the future 1995(09)
|
[3] | Amanda Weaver Presswerk kongen champions GMT 1994(09)
|
[4] | Amanda Weaver Symalit expecting GMT boom expands capacity 1994(06)
|
[5] | Amanda Weaver Mitras:Composites developments Europe Wide 1994(09)
|
[6] | 曾汉民, 章明秋, 张志毅, 等. 单向CF/P EEK 层板的冷热循环疲劳特性[J]. 高分子材料科学与工程, 1994, 10 (4) : 1292131.
|
[7] | Shahinian P Thermal fatigue of aluminum-boron composites 1970(01)
|
[8] | Morris W L.James M R.Inman R V Accelerated aging of the thermal expansion of unidirectional graphite/epoxy composites by thermal fatigue 1989(04)
|
[9] | Garmong G Elastic-plastic analysis of deformation induced by thermal stress in eutectic composites. I. Theory 1974(10)
|
[10] | Wetherbold R C.Westfall L J Thermal cycling of tungsten-fiber-reinforced superalloy composites 1988(02)
|
[11] | Herrera-Franco P J.Drzal L T Comparison of methods for the measurement of fiber/matrix adhesion in composites 1992(01)
|
Full-Text