全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复合材料粘弹性本构关系与热应力松弛规律研究Ⅰ:理论分析

, PP. 152-157

Keywords: 复合材料,粘弹性,热膨胀,本构方程,均匀化理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于均匀化理论研究了复合材料粘弹性分析的多尺度方法,以及复合材料等效热应力松弛规律。引入了等效粘弹性热应力系数张量和等效时变热膨胀系数的概念,建立了含温度变化的复合材料热粘弹性本构关系,并给出了基于均匀化理论的复合材料粘弹性松弛模量、等效热应力松弛系数和等效时变热膨胀系数的预测方法。对特殊复合材料的粘弹性性质进行了分析,结果表明:(1)复合材料的粘弹性本构关系具有与常规材料的本构关系类似的形式,但一般复合材料的热应力松弛规律与常规材料不同,其热膨胀不能瞬时完成,而具有明显的时变性质;(2)空心材料的热膨胀具有瞬时性质,其等效时变热膨胀系数与基体材料的热膨胀系数相同,其热应力松弛规律与基体材料的松弛规律相同;(3)当各组分材料的松弛模量的各分量可分解成不同的系数与相同的时间函数的乘积时,复合材料的等效时变热膨胀系数与时间无关,其松弛规律与常规材料的松弛规律完全相同。

References

[1]  Bensoussan A , Lions J L , Papanicolaou G. Asymptotic Analysisfor Periodic Structures [M] . New York : NortH2holland , 1978.
[2]  Hollister S J , Kikuchi N. A comparison of homogenizationandstandard mechanics analyses for periodic porous composites [J] .Computation Mechanics , 1992 , 10 : 73 - 95.
[3]  Lukkassen D , Persson L E , Wall P. Some engineering andmathematical aspects on the homogenization method [J] . Composites Engineering , 1995 , 5 (5) : 519 - 531.
[4]  刘书田, 程耿东. 用均匀化方法预测单向纤维复合材料热膨胀行为[J] . 复合材料学报, 1997 , 14 (1) : 76 - 82.Liu S T , Cheng G D. Prediction of coefficients of thermal expansion for unidirectional composites using homogenizationmethod [J] . Acta Materiae Compositae Sinica , 1997 , 14 (1) :76 - 82.
[5]  Hassani B , Hinton E. A review of homogenization and topologyoptimization ( Ⅰ) : Homogenization theory for media with periodic structure [J] . Computers and St ruct ures , 1998 , 69 : 707- 717.
[6]  Aboudi J . Mechanics of Composite Materials : A Unified MiCromechanical Approach [M] . Amsterdam: Elsevier , 1991.
[7]  Yates B , McCalla B A , Phillips L N , et al . The thermal expansion of carbon fiber-reinforced plastics ( Part 5) : The influenceof matrix curing characteristics [J] . Journal of Materials Science , 1979 , 14 : 1207 - 17.
[8]  Hodges J , Yates B , Darby M I , et al . Residual stresses and theoptimum cure cycle for an epoxy resin [J] . Journal of Materials Science , 1989 , 24 : 1984 - 90.
[9]  Williams J G. On the prediction of residual stresses in polymers[J] . Plastics and Rubber Processing and A pplications , 1981 ,1 : 369 - 77.
[10]  Brinson L C , Lin W S. Comparison of micromechanics methodsfor effective properties of multiphase viscoelastic composites[J] . Composite St ruct ures , 1998 , 41 : 353 - 367.
[11]  Hill R. A self consistent mechanics of composite materials [J] .J Mech Phys Solids , 1965 , 13 : 213 - 222.
[12]  Mori T , Tanaka K. Average stress in matrix and average elasticenergy of materials with misfitting inclusions [J] . Acta Metallurgy , 1973 , 21 : 571 - 574.
[13]  Benveniste Y. A new approach to the application of Mori-Tanaka’s theory in composite materials [J] . Mech Mater , 1987 ,6 : 147 - 157.
[14]  Paley M , Aboudi J . Micromechanical analysis of composites bythe generalized cells model [J] . Mech Mater , 1992 , 14 : 127- 139.
[15]  Ghosh S , Moorthy S , Lee K. Multiple scale elastic-plastic analysis of heterogeneous materials with the voronoi cell finite element model [J] . Computational Methods in Micromechanics ,1995 , 212 : 87 - 105.
[16]  Li J , Weng GJ . Effective creep behavior and complex moduli offiber and ribbon-reinforced polymer-matrix composites [J] .Composite Science and Technology , 1994 , 52 : 615 - 629.
[17]  梁 军, 杜善义. 粘弹性复合材料力学性能的细观研究[J] . 复合材料学报, 2001 , 18 (1) : 97 - 100.Liang J , Du , S Y. Study of mechanical properties of viscoelasticmatrix composite by micromechanics [J] . Acta Materiae Compositae Sinica , 2001 , 18 (1) : 97 - 100.
[18]  刘书田, 常崇义, 杨海天, 等. 单向节理岩石粘弹性性能预测[J] . 岩石力学与工程学报, 2003 , 22 (4) : 582 - 588.Liu S T , Chang C Y, Yang H T , et al . Prediction of visco-elastic property of unidirectionally jointed rock [J] . Chinese Journal of Rock Mechanics and Engineering , 2003 , 22 (4) : 582 -588.
[19]  Chung P W, Tamma K K, Namburu R R. A micro-macro homogenization approach for viscoelastic creep analysis with dissipative correctors for heterogeneous woven-fabric layered media[J] . Composites Science and Technology , 2000 , 60 : 2233 -2253.
[20]  Seiferta O E , Schumacherb S C , Hansena A C. Viscoelasticproperties of a glass fabric composite at elevated temperatures :Experimental and numerical results [J] . Composites Part B :Engineering , 2003 , 34 (7) : 571 - 586.
[21]  Barbero E J , Luciano R. Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transverselyisotropic fibers [J] . International Journal of Solids and St ruct ures , 1995 , 32 (13) : 1859 - 1872.
[22]  过梅丽, 肇 研, 谢 令. 航空航天结构复合材料湿热老化机理的研究[J] . 宇航材料工艺, 2002 , 32 (4) : 51 - 54.Guo M L , Zhao Y, Xie L. Study on hygrothermal ageing mechanisms of aerospace structure composites [J] . Chinese Journalof Aerospace Materials and Technology , 2002 , 32 (4) : 51 -54.
[23]  张义同, 严宗达. 变温粘弹性的一般理论[J] . 力学学报,1993 , 25 (6) : 685 - 696.Zhang Y T , Yan Z D. The general theory of viscoelasticity under nonconstant temperature states [J] . Acta Mechanica Sinica , 1993 , 25 (6) : 685 - 696.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133