全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二维正交各向异性结构弹塑性问题的边界元分析

, PP. 156-161

Keywords: 二维正交各向异性结构,弹塑性问题,边界元法

Full-Text   Cite this paper   Add to My Lib

Abstract:

给出了二维正交各向异性结构弹塑性问题的边界元分析方法,包括相应边界积分方程、内点应力公式、边界元求解格式以及弹塑性应力计算方法。在弹塑性分析中,引入了Hill-Tsai屈服准则,采用初应力法和切向预测径向返回法确定实际应力状态。通过具体算例分析了二维正交各向异性结构的弹塑性应力和塑性区分布情况,部分数值结果与已有结果进行了比较,两者基本吻合。结果表明,本文中给出的边界元法可以有效地用于求解二维正交各向异性结构的弹塑性问题。

References

[1]  张洪武, 王鲲鹏. 弹塑性复合材料多尺度计算模型与算法研究[J] . 复合材料学报, 2003, 20 (1) : 60 - 66.Zhang H W, Wang K P. Numerical model and algorit hm forMulti-scale analysis of elastic-plastic composite materials [J] .Acta Materiae Composi tae S inica, 2003, 20 (1) : 60 - 66.
[2]  Lekhnit skii S G. Theory of Elasticity of an Anisot ropic Body[M] . Moscow : Mir Publishers, 1981.
[3]  Hinton E, Owen D R J . Finite Element Software for Platesand Shells [M] . Swansea : Prinerige Press Ltd, 1984.
[4]  田宗若. 复合材料中的边界元法[M] . 西安: 西北工业大学出版社, 1992.Tian Z R. The Boundary Element Met hod in Composite Materials [M] . Xi’an : Nort hwestern Polytechnical UniversityPress, 1992.
[5]  Hill R. A t heory of t he yielding flow of anisot ropic metal s[J] . Proceedings of the Roy al S ociet y of L ondon : Series A,1948, 193 : 281 - 297.
[6]  Whang B. Elasto-Plastic Ort hot ropic Plates and Shells [A] .In : Rowan W H, Hackett R M, eds. Proceedings of t heSymposium on Application of t he Finite Element Met hod inCivil Engineering [C] . San Francisco : ASCE, 1969. 481 -515.
[7]  Owen D R J, Figueiras J A. Elasto-plastic analysis of anisot ropic plates and shells by t he semiloof element [J] . I nternational J ournal f or N umerical Methods in Engineering,1983, 19 (4) : 521 - 539.
[8]  Karakuzu R, Ozcan R. Exact solution of elasto-plastic st resses in a metal-mat rix composite beam of arbit rary orientationsubjected to t ransverse loads [J] . Composites Science andTechnology, 1996, 56 (12) : 1383 - 1389.
[9]  杜庆华, 岑章志, 嵇 醒, 等. 边界积分方程方法———边界元法[M] . 北京: 高等教育出版社, 1989.Du Q H, Cen Z Z, Ji X, et al . The boundary integral equation met hod-boundary element met hod[M] . Beijing : HigherEducation Press, 1989.
[10]  Rizzo F J, Shippy D J . A met hod for st ress determination inplane anisot ropic elastic bodies [J] . J ournal of CompositeMaterials, 1970, 4 (1) : 36 - 61.
[11]  Sun X S, Cen Z Z. Furt her improvement on fundamental solutions of plane problems for ort hot ropic materials [J] . ActaMechanica S oli da S inica, 2002, 15 (2) : 171 - 181.
[12]  Sun X S, Huang L X, Liu Y H, et al . Elasto-plastic analysisof two-dimensional ort hot ropic bodies wit h t he boundary element met hod [J] . Computers, Materials & Continua, 2004,1 (1) : 91 - 106.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133