郭 成, 郭生武, 程 羽, 等. SiC颗粒增强铝合金基梯度复合材料拉伸力学性能及其评价[J]. 复合材料学报, 2003, 20 (4) : 23-28. Guo Cheng, Guo Shengwu, Cheng Yu, et al. Tensile mechanical properties and the evaluation of aluminium alloy matrix gradient composites reinforced with SiC particles[J]. Acta Materiae Compositae Sinica, 2003, 20 (4) : 23-28.
[2]
郭 成, 程 羽, 易树清,等. SiC颗粒增强铝合金基梯度复合材料的制备与压缩性能[J]. 复合材料学报, 1999, 16 (1) : 8-13. Guo Cheng, Cheng Yu, Yi Shuqing, et al. Study of fabrication and compressive performance of aluminium alloy matrix gradient composites reinforced with SiC particles[J]. Acta Materiae Compositae Sinica, 1999, 16 (1) : 8-13.
[3]
权高峰, 柴东朗, 宋余九,等. 增强体种类及含量对金属基复合材料力学性能的影响[J]. 复合材料学报, 1999, 16 (2) : 62-66. Quan Gaofeng, Chai Donglang, Song Yujiu, et al. Effects of category and content of reinforcements on mechanical properties of metal matrix composites[J]. Acta Materiae Compositae Sinica, 1999, 16 (2) : 62-66.
[4]
罗兵辉, 柏振海. SiC增强颗粒含量对6066铝合金组织及力学性能的影响[J]. 轻合金加工技术, 2001, 29 (8) : 43-46. Luo Binghui, Bai Zhenhai. Microstructure characteristic and mechanical properties of 6066Al/SiCP composites[J]. Light Alloy Fabrication Technology, 2001, 29 (8) : 43-46.
[5]
Kiser M T ,Zok F W, Wilkinson D S. Plastic flow and fracture of particulate metal matrix composite[J]. Acta Mater, 1996, 44 (9) :3465-3476.
[6]
徐 绯, 李玉龙, 郭伟国. 高应变率下颗粒形状、含量和基体特性对金属基复合材料力学行为的影响[J]. 复合材料学报, 2003, 20 (6) :36-41. Xu Fei, Li Yulong, Guo Weiguo.Influences of particle shape, volume fraction and matrix materials on the compressive behavior of MMCs[J]. Acta Materiae Compositae Sinica, 2003, 20 (6) :36-41.
[7]
Lloyd D J. Particle reinforced aluminum and magnesium matrix composites[J]. Int Mater Rev, 1994, 39 (1) : 1-23.
[8]
刘龙飞, 戴兰宏, 杨国伟. SiC颗粒增强金属基6151Al复合材料中的增强颗粒尺寸效应[J]. 湘潭大学自然科学学报, 2001, 23 (4) : 46-50. Liu Longfei, Dai Lanhong, Yang Guowei. Reinforced particle dimension effect in SiCP particle reinforced metal based 6151Al composite[J]. Natural Science Journal of Xiangtan University, 2001, 23 (4) : 46-50.
[9]
刘龙飞, 戴兰宏, 凌 中,等. 冲击剪切载荷下SiCP/6151Al复合材料变形局部化及增强颗粒尺寸效应[J]. 复合材料学报, 2002, 19 (4) : 51-55. Liu Longfei, Dai Lanhong, Ling Zhong,et al. Localized deformation and particle size-effect in particle-reinforced SiCP/6151Al composites under impulsive shear loadings[J]. Acta Materiae Compositae Sinica, 2002, 19 (4) : 51-55.
[10]
戴兰宏, 凌 中, 白以龙. 颗粒增强金属基复合材料变形强化中的应变梯度效应[J]. 高压物理学报, 2001, 15 (1) : 5-11. Dai Lanhong, Ling Zhong, Bai Yilong. Strain gradient effects on the strengthening behaviors of particle reinforced metal matrix composites[J]. Chinese Journal of High Pressure Physics, 2001, 15 (1) : 5-11.
[11]
Xue Z,Huang Y, Li M. Particle size effect in the metallic materials: A study by the theory of mechanism-based strain gradient plasticity[J]. Acta Materialia, 2002, 50 (1) : 149-160.
[12]
Zhang H, Ramesh K T, Chin E S C. High strain rate response of aluminum 6092/BC composites[J]. Materials Science and Engineering, 2004, 384 (1) : 26-34.
[13]
Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity——Ⅰ. Theory[J]. Journal of the Mechanics and Physics of Solids, 1999, 47 (6) : 1239-1263.
[14]
Leon L, Mishnaevky Jr. Three-dimensional numerical testing of microstructures of particle reinforced composites[J]. Acta Materialia, 2004, 52 (14) : 4177-4188.
[15]
Li Y,Ramesh K T, Chin E S C. Viscoplastic deformations and compressive damage in an A359/SiCP metal-matrix composite[J]. Acta Mater, 2000, 48 (7) : 1563-1573.
[16]
凌 中. 2124Al/SiC复合材料的动态变形行为及微结构效应[J]. 力学学报, 1998, 30 (4) : 442-448. Ling Zhong. The deformation behavior and microstructure effect of 2124Al/SiCP under impact loading[J]. Acta Mechanical Sinica, 1998, 30 (4) : 442-448.
[17]
唐春安, 傅宇方, 林 鹏. 颗粒增强复合材料基体破坏过程的数值模拟分析[J]. 复合材料学报, 1999, 16 (3) : 110-117. Tang Chunan, Fu Yufang, Lin Peng. Numerical approach to failure process in brittle and heterogeneous matrix filled with particles[J]. Acta Materiae Compositae Sinica, 1999, 16 (3) : 110-117.
[18]
唐春安, 傅宇方, 朱万成. 界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析[J]. 复合材料学报, 1999, 16 (4) : 112-120. Tang Chunan, Fu Yufang, Zhu Wancheng. Numerical approach to effect of interface properties on failure modes in particle filled composite[J]. Acta Materiae Compositae Sinica, 1999, 16 (4) : 112-120.
[19]
Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity: Theory and experiments[J]. Acta Mater, 1994, 42 (2) : 475-487.
[20]
Huang Y, Gao H,Nix W D, et al. Mechanism-based strain gradient plasticity——Ⅱ. Analysis[J]. Journal of the Mechanics and Physics of Solids, 2000, 48 (1) : 99-128.
[21]
Huang Y, Qu S, Hwang K C, et al. A conventional theory of mechanism-based strain gradient plasticity[J]. International Journal of Plasticity, 2004, 20 (4-5) : 753-782.
[22]
Nix W D, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J Mech Phys Solids, 1998, 46 (3) : 411-425.
[23]
Xu D, Schmauder S, Soppa E. Influence of geometry factors on the mechanical behavior of particle and fiber-reinforced composites[J]. Computational Materials Science, 1999, 15 (3) : 295-301.
[24]
Hu G K, Guo G,Baptiste D. A micromechanical model of influence of particle fracture and particle cluster on mechanical properties of metal matrix composites[J]. Computational Materials Science, 1998, 9 (3-4) : 420-430.
[25]
Eckdchlager A,Han W,Bohm H J. A unit cell model for brittle fracture of particles embedded in a ductile matrix[J]. Computational Materials Science, 2002, 25 (1-2) : 85-91.
[26]
Han W,Eckdchlager A,Bohm H J. The effects of three-dimensional multi-particle arrangements on the mechanical behavior and damage initiation of particle-reinforced MMCs[J]. Composites Science and Technology, 2001, 61(11) : 1581-1590.
[27]
Bao G, Lin Z. High strain rate deformation in particle reinforced metal matrix composites[J]. Acta Mater, 1996, 44 (3) : 1011-1019.
[28]
Chawla N, Ganesh V V, Wunsch B. Three-dimensional(3D)microstructure visualization and finite element modeling of mechanical behavior of SiC particle reinforced aluminum the composites[J]. Scripta Materialia, 2004, 51 (3) : 161-165.
[29]
Li Y, Ramesh K T,Chin E S C. The compressive viscoplastic response of an A359/SiCP metal-matrix composite and of the A359 aluminum alloy matrix[J]. International Journal of Solid and Structures, 2000, 37 (51) : 7547-7562.