全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

负热膨胀材料ZrV2O7与金属Al的复合行为及特性

, PP. 25-30

Keywords: 负热膨胀材料,钒酸锆,(,ZrV2O7,),湿化学,复合材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用湿化学法制备先驱体-煅烧合成制备钒酸锆-ZrV2O7的新技术,采用粉末冶金方法,研究了ZrV2O7与金属Al两类不同材料的复合行为及其热膨胀特性。X射线衍射结果表明:利用上述技术合成的ZrV2O7纯度高,杂质含量极少。采用合成的ZrV2O7粉体与金属Al粉末混合,按不同成形-烧结工艺制备ZrV2O7与金属Al的复合材料试样,经扫描电子显微组织分析、微区电子探针能谱成分分析及X射线衍射分析发现,在一定烧结温度范围内,ZrV2O7与金属Al(无论是固态还是熔融态)均表现出了良好的烧结性与浸渍性,但在烧结温度下在ZrV2O7与金属Al之间存在Al对Zr的置换反应,且随温度升高而加剧。用热膨胀仪分别对合成的ZrV2O7及其与金属Al烧结而成的复合材料进行热膨胀特性测试,结果表明:ZrV2O7在400~680K的温度区间具有很强的负膨胀特性;其与金属Al的复合材料虽然仍具有正的热膨胀特性,但其膨胀率较金属Al低得多。

References

[1]  聂存珠,赵乃勤. 金属基电子封装复合材料的研究进展[J]. 金属热处理学报,2003,28 ( 6 ) :1-5. NIE Cunzhu,ZHAO Naiqin. Review of metal matrix composite materials for electronic packaging[J]. Transactions of Metal Heat Treatment,2003,28 ( 6 ) :1-5.
[2]  Ryan J McGlen, Jachuck R, Lin S,et al. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24 (8-9) :1143-1156.
[3]  张佐光. 功能复合材料[M]. 北京:化学工业出版社,2004.172-193.
[4]  胡 明.金属基复合材料的热膨胀[J]. 佳木斯大学学报(自然科学报),2004,22 (1) :94-100. HU Ming. Thermal expansion of metal matrix composites[J]. J Jiamusil University ( Natural Science Edition ) , 2004, 22 (1) : 94-100.
[5]  Arpon R, Molina J M, Saravanan R,et al.Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distribution[J]. Acta Materialia, 2003, 51:3145-3156.
[6]  王 涛.铝渗碳化硅电子封装材料的热物理性能 . 西安:西北工业大学,2003.1-15.
[7]  刘龙飞,戴兰宏,凌 中,等.冲击剪切载荷下SiCP/6151Al复合材料变形局部化及增强颗粒尺寸效应[J]. 复合材料学报,2002,19 (4) :51-55. LIU Longfei, DAI Lanhong, LING Zhong,et al.Localized deformation and particle size-effect in particle-reinforced SiCP/6151Al composites under impulsive shear loadings[J]. Acta Materiae Compositae Sinica, 2002, 19 (4) :51-55.
[8]  李凤平. 金属基复合材料的发展与研究现状[J].复合材料学报,2004,21 (1) :48-53. LI Fengping. Development and current study of metal matrix composite material[J].Acta Materiae Compositae Sinica, 2004,21 (1) :48-53.
[9]  Yoshida K, Morigami H. Thermal properties of diamond/copper composite material[J]. Microelectronics Reli-ability,2004,44 (2) :303-308.
[10]  Yilmaz S, Dunand D C. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu-60%(volume fraction) ZrW2O8 composite[J]. Composites Science and Technology,2004, 64 (12) :1895-1898.
[11]  Balch D K, Dunand D C. Copper-zirconium tungstate composites exhibiting low and negative thermal expansion influenced by reinforcement phase transformations[J]. Metall and Mater Trans,2004, 35A (3) : 1159-1162.
[12]  Mary T A, Evans J S O, Vogt T, et al. Negative thermal expansion from 0.3 to 1050K in ZrW2O8[J]. Science, 1996, 272 (5258) :90-92.
[13]  Korthuis V, Khosrovani N, Sleight A W. Negative thermal expansion and phase transitions in a ZrV2-xPxO7 series[J]. Chem Mater, 1995, 7:412-417.
[14]  Turquat C,Muller C,Nigrell E,et al. Structural investigation of temperature-induced phase transitions in HfV2O7[J]. Eur Phys J AP, 2000, 10 (4) : 15-17.
[15]  Withers R L, Tabira Y, Jso Evans,et al. A new three-dimensional incommensurately modulated cubic phase (in ZrP2O7) and its symmetry characterization via temperature- dependent electron diffraction[J]. J Solid State Chemistry, 2001, 157 (1) :186-192.
[16]  Xing Xianran, Zhu Zhanqi. Zero-thermal expansion and heat capacity of zirconium pyrovanadate doped with zirconia vanadium(V) oxide[J]. Rare Metals, 2001, 20 (1) :1-4.
[17]  Weller Mark T, Henry Paul F, Chick C. An analysis of the thermal motion in the negative thermal expansion material Sc2 ( WO4 ) 3 using isotopes in neutron diffraction[J]. J Phys Chem B, 2000, 104 (51) : 12224-12229.
[18]  Tyagi T A, Achary S N, Mathews M D J. Phase transition and negative thermal expansion in A2 ( MoO4 ) 3 system ( A=Fe3+, Cr3+ and Al3+ ) [J]. J Alloy and Compounds, 2002, 339 (4) :207-210.
[19]  Attfield M P, Sleight A W. Exceptional negative thermal expansion in AlPO4-17[J]. Chem Mater, 1998, 10 (7) :2013-2019.
[20]  Tao J Z, Sleight A W. Free energy minimization calculations of negative thermal expansion in AlPO4-17[J]. Journal of Physics and Chemistry of Solids,2003,64 (7) : 1473-1479.
[21]  Stevens R, Linford J,Field B F Wood, et al. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials,cubic a-ZrW2O8 and cubic ZrMo2O8, from T= ( 0 to 400 K ) [J]. Scripta Materialia, 2003, 35 (6) :919-937.
[22]  Arora Akhilesh K, Sastry V S, Sahu P,et al.The pressure-amorphized state in zirconium tungstate: A precursor to decomposition[J].J Phys Condens Mater, 2004,16 (7) :1025-1031.
[23]  Sikka S K J. Negative expansion and its relation to high pressures[J].Phys Condens Mater, 2004,16 (14) :1033-1039.
[24]  Sleight A W. Thermal contraction[J]. Science,1995, 19 (2) :64-68.
[25]  Roy K,Pal D K, Basu S, et al. Synthesis of a new ion exchanger,zirconium vanadate and its application to the separation of barium and cesium radionuclides at tracer levels[J]. Applied Radiation and Isotopes, 2002, 57 (4) :471-474.
[26]  钱逸泰. 结晶化学导论[M]. 合肥:中国科学技术大学出版社,2002.234-239.
[27]  张克从. 近代晶体学基础 ( 上 ) [M].北京: 科学出版社,1987.120-179.
[28]  陈树川,陈凌冰. 材料物理性能[M]. 上海:上海交通大学出版社,1999.253-255.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133