全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

芳纶纤维增韧碳纤维泡沫金属夹芯梁压缩性能及界面性能

, PP. 1497-1502

Keywords: 复合材料夹芯梁,界面增韧,芳纶纤维,低密度短纤维薄膜,桥联作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究芳纶短纤维对复合材料夹芯材料/结构的界面及性能的影响,对具有芳纶短纤维增韧界面的碳纤维-泡沫铝夹芯梁进行了试验和细观增韧机制研究.在夹芯梁制备过程中,在碳纤维-泡沫铝界面加入低密度芳纶短纤维薄膜,通过短纤维的桥联作用,提高夹芯梁的界面黏接性能.研究了芳纶纤维增韧对夹芯梁面内压缩性能和破坏模态的影响,采用非对称双悬臂梁(ADCB)试验测量了不同增韧参数条件下,碳纤维表板与泡沫铝芯体之间的临界能量释放率.试验结果显示:在相同增韧参数条件下,Kevlar纤维增韧夹芯梁的面内压缩性能和界面临界能量释放率均较好,而混杂长度Kevlar纤维的界面增韧效果最优.通过对试件断面的SEM观测,分析了芳纶纤维增韧的细观增韧机制.

References

[1]  Vaidya U K, Pillay S, Bartus S, et al. Impact and post-impact vibration response of protective metal foam composite sandwich plates [J]. Materials Science and Engineering A, 2006, 428(1): 59-66.
[2]  Nemat-Nasser S, Kang W J, McGee J D, et al. Experimen-tal investigation of energy-absorption characteristics of components of sandwich structures [J]. International Journal of Impact Engineering, 2007, 34(6): 1119-1146.
[3]  Leong K C, Jin L W. An experimental study of heat transfer in oscillating flow through a channel filled with an aluminum foam [J]. International Journal of Heat and Mass Transfer, 2005, 48(2): 243-253.
[4]  Wu J J, Li C G, Wang D B, et al. Damping and sound absorption properties of particle reinforced Al matrix composite foams [J]. Composites Science and Technology, 2003, 63(3): 569-574.
[5]  Du L, Jiao G Q. Indentation study of Z-pin reinforced polymer foam core sandwich structures [J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6): 822-829.
[6]  Mouritz A P. Review of z-pinned composite laminates [J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(12): 2383-2397.
[7]  Sohn M S, Hu X Z. Mode II delamination toughness of carbon-fiber epoxy composites with chopped Kevlar fiber reinforcement [J]. Composites Science and Technology, 1994, 52(3): 439-448.
[8]  Yasaee M, Bond I P, Trask R S, et al. Mode II interfacial toughening through discontinuous interleaves for damage suppression and control [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(1): 121-128.
[9]  Wang C, Chen H R, Lei Z K. Experimental investigation of interfacial fracture behavior in foam core sandwich beams with visco-elastic adhesive interface [J]. Composite Structures, 2010, 92(5): 1085-1091.
[10]  Sun Z, Jeyaraman J, Sun S Y, et al. Carbon-fiber aluminum-foam sandwich with short aramid-fiber interfacial toughening [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(11): 2059-2064.
[11]  Sun S Y, Chen H R. The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model [J]. Science China Physics, Mechanics & Astronomy, 2011, 54(8): 1481-1487.
[12]  Hearle J W S. High-performance fibers [M]. Abington: Woodhead Publishing Ltd., 2001: 36-48.
[13]  孙士勇, 王 灿, 陈浩然. 具有短纤维增韧界面的复合材料夹芯梁断裂机制的实验和数值研究 [J]. 复合材料学报, 2011, 28(1): 172-176. Sun Shiyong, Wang Can, Chen Haoran. Study on fracture mechanism for composite sandwich beams with interfacial chopped fiber reinforcement by experimental and numerical method [J].Acta Materiae Compositae Sinica, 2011, 28(1): 172-176.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133