全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

压电弹性体中光滑顶点的正三角形孔边裂纹的反平面问题分析
Anti-plane problem analysis of edge crack emanating from regular triangle hole with smooth vertices in piezoelectroelastic solids

DOI: 10.13801/j.cnki.fhclxb.20140616.001

Keywords: 压电材料,光滑顶点的正三角形孔,孔边裂纹,复变函数法,保角映射
piezoelectric materials
,regular triangle hole with smooth vertices,edge crack,complex variable function method,conformal mapping

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过构造新的保角映射, 利用复变函数的方法, 研究了含光滑顶点的正三角形孔边裂纹的横观各向同性的压电弹性体的反平面问题。在电可穿透和电不可穿透裂纹、 孔周及裂纹面为自由表面的假设下, 充分利用Cauchy积分公式和复变函数方法, 得到了裂纹尖端的场强度因子和能量释放率的表达式。数值算例显示了在不同边界条件下裂纹的几何尺寸、 机电载荷对能量释放率和机械应变能释放率的影响规律。 结果表明: 在电可通和电不可通边界条件下, 裂纹长度和三角形边长的增加会导致能量释放率增加, 机械载荷则总是促进裂纹的扩展。在电不可通边界条件下电位移可以促进或抑制裂纹的扩展, 而在电可通边界条件下电位移对裂纹扩展没有影响。 By constructing new conformal mapping and using complex variable function method, anti-plane problem of isotropic piezoelectroelastic solids containing regular triangle hole with smooth vertices which emanates edge crack was studied. Under the assumption that the surfaces of the crack and hole were electrically permeable and electrically impermeable, respectively, and their surfaces are free traction, combined with Cauchy integral and complex variable function method, the expressions of the field intensity factors and the energy release rates near crack tip were obtained. The numerical examples were conducted to show the influences of the geometrical parameters of crack and applied mechanical loads on energy release rate and mechanical strain energy release rate under different boundary conditions. The results show that, under the electrically permeable and impermeable boundaries, the increases of the length of crack and the size of triangle hole lead to the increase of the energy release rate. The mechanical loads always promote crack growth. Under the electrically impermeable boundary the electric displacements may promote or retard the crack growth, but the electric displacements have no effect on the crack growth under the electrically permeable boundary. 国家自然科学基金(11262012); 高等学校博士学科点专项科研基金(20101102110016); 内蒙古工业大学科学研究项目(ZD201219)

References

[1]  Guo J H, Lu Z X, Han H T, et al. The behavior of two non-symmetrical permeable cracks emanating from an elliptical hole in a piezoelectric solid[J]. European Journal of Mechanics-A/Solids, 2010, 29(4): 654-663.
[2]  Song T S, Li D. Dynamic stress intensity factor for interfacial cracks of mood III on a circular cavity in piezoelectric bimaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1219-1224 (in Chinese). 宋天舒, 李冬. 压电体中孔边III型界面裂纹的动应力强度因子[J].力学学报, 2010, 42(6): 1219-1224.
[3]  Feng Z H, Liu G T. Electroelastic field analysis for the plane problem of piezoelectric composite material with collinear periodic cracks[J]. Acta Materiae Compositae Sinica, 2012, 29(2): 199-204(in Chinese). 冯中华, 刘官厅. 压电复合材料的共线周期性裂纹平面问题的电弹性场分析[J]. 复合材料学报, 2012, 29(2): 199-204.
[4]  Zhang T Y, Tong P. Fracture mechanics for mode-III crack in a piezoelectric material[J]. International Journal of Solids and Structures, 1996, 33(3): 343-359.
[5]  Wang Y J, Gao C F. The mode-III cracks originating from the edge of a circular hole in a piezoelectric solid[J]. International Journal of Solids and Structures, 2008, 45(16): 4590-4599.
[6]  Guo J H, Lu Z X, Han H T, et al. Exact solutions for anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material[J]. International Journal of Solids and Structures, 2009, 46(21): 3799-3809.
[7]  Yuan Z S, Guo J H, Lu Z X. Anti-plane analysis of power function curved cracks in piezoelectric composites[J]. Acta Materiae Compositae Sinica,2012, 29(1): 136-143 (in Chinese). 袁泽帅, 郭俊宏, 卢子兴. 压电复合材料中幂函数型曲线裂纹的反平面问题[J]. 复合材料学报, 2012, 29(1): 136-143.
[8]  Guo H M. Analytic solutions for a finite plane with an equilateral triangle hole[J]. Yinshan Academic Journal: Naturalium, 2009, 23(1):9-11(in Chinese). 郭怀民. 带正三角形孔口的平面弹性问题的解析解[J]. 阴山学刊: 自然科学版, 2009, 23(1): 9-11.
[9]  Guo J H, Liu G T. Stress analysis of the problem about a circular hole with asymmetry collinear cracks[J].Journal of Inner Mongolia Normal University, 2007, 36(4): 418-422(in Chinese) 郭俊宏, 刘官厅. 具有不对称共线裂纹的圆形孔口问题的应力分析[J]. 内蒙古师范大学学报, 2007, 36(4): 418-422.
[10]  Guo J H, Liu P, Lu Z X, et al. Anti-plane analysis of a semi-infinite crack in a piezoelectric strip[J]. Applied Mathematics and Mechanics, 2011, 32(5): 75-82.
[11]  Lu Z X, Liu P, Guo J H. Exact solution of two semi-infinite collinear cracks in piezoelectric strip[J]. Applied Mathematics and Mechanics, 2011, 32(11):1399-1406.
[12]  Wang Y J, Gao C F. The anti-plane solution for the edge cracks originating from a rhombus hole in the piezoelectric materials[D]. Nanjing: Nanjing University of Aeronautics and Astronantics, 2012 (in Chinese). 王永健, 高存法. 含菱形孔孔边裂纹压电弹性体的反平面问题[D]. 南京: 南京航空航天大学, 2012.
[13]  Zhang T Y, Gao C F. Fracture behaviors of piezoelectric materials[J]. Theoretical and Applied Fracture Mechanics, 2004, 41(1-3): 339-379.
[14]  Muskhelishvili N I. Some basic problems of mathematical theory of elasticity[M]. Groningen: Noordhoff, 1963.
[15]  Sosa H. Plane problems in piezoelectric media with defects[J]. International Journal of Solids and Structures, 1991, 28(4): 491-505.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133