|
- 2015
湿热环境对旋转复合材料梁摆振特性的影响
|
Abstract:
首先, 基于复合材料在湿热环境下的本构关系推导了旋转复合材料梁轴力和弯矩的表达式, 分析了温度和湿度对轴力和弯矩的影响, 然后, 基于d'Alembert原理建立了旋转复合材料梁摆振控制方程, 并应用Galerkin法进行求解, 分析了温度和湿度对旋转复合材料梁刚度的影响, 最后, 通过数值模拟讨论了湿热环境对旋转复合材料梁摆振动力学特性的影响。结果表明: 湿热环境对旋转复合材料梁的摆振频率和模态影响显著, 摆振频率随湿热环境加剧而降低, 热膨胀效应对摆振频率的影响大于材料性能变化对其的影响, 湿热环境与旋转的联合作用使模态的节点位置发生明显偏移。 First, the expressions of axial force and bending moment for the rotating composite beams were deduced based on the constitutive relations of composites under hygrothermal environment. The influences of temperature and humidity on axial force and bending moment were analyzed. Then, the d'Alembert principle was employed to establish the lead-lag vibration governing equation for the rotating composite beams. The temperature and humidity effects on the stiffness of rotating composite beams were investigated after solving the equation by Galerkin method. Finally, the effects of hygrothermal environment on lead-lag vibration dynamic characteristics of rotating composite beams were analyzed by numerical simulation. The results show that hygrothermal environment affects lead-lag vibration frequency and modal of rotating composites beams conspicuously. Lead-lag vibration frequency decreases when the hygrothermal environment exacerbates. The effect of thermal expansion on lead-lag vibration frequency is more obvious than that of material properties variations. The combined effect of hygrothermal environment and rotating result in the obvious locational excursion of modal nodes. 国家自然科学基金(11372257); 四川省青年科技创新研究团队资助计划(2013TD0004)
[1] | Zhang S S, Zhuang Z. Composite materials and viscoelasticity mechanics[M]. Beijing: China Machine Press, 2011: 152-164 (in Chinese). 张少实, 庄茁. 复合材料与粘弹性力学[M]. 北京: 机械工业出版社, 2011: 152-164. |
[2] | Lee S H, Shin S H, Yoo H H. Flapwise bending vibration analysis of rotating composite cantilever beams[J]. KSME International Journal, 2004, 18(2): 240-245. |
[3] | Mcgee D G, Chu H R. Three-dimensional vibration analysis of rotating laminated composite blades[J]. ASME Journal of Engineering for Gas Turbines and Power, 1994, 116(3): 663-671. |
[4] | Chandiramani N K, Librescu L, Shete C D. On the free vibration of rotating composite beams using a higher order shear formulation[J]. Aerospace Science and Technology, 2002, 6(8): 545-561. |
[5] | Rao V V S, Sinha P K. Dynamic response of multidirectional composites in hygrothermal environments[J]. Composite Structures, 2004, 64(3-4): 329-338. |
[6] | Oh S Y, Song O, Livrescu L. Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams[J]. International Journal of Solids and Structure, 2003, 40(5): 1203-1224. |
[7] | Huang C L, Lin W Y, Hsiao K M. Free vibration analysis of rotating Euler beams at high angular velocity[J]. Computers and Structures, 2010, 88(17-18): 991-1001. |
[8] | Naidu N V, Sinha P K. Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments[J]. Composite Structures, 2007, 77(4): 475-483. |
[9] | Yang J M, Sun L X, Wu L J, et al. Geometrically nonlinear analysis of laminated composite plates under hygrothermal environments[J]. Engineering Mechanics, 2005, 22(5): 59-63 (in Chinese). 杨加明, 孙良新, 吴丽娟, 等. 湿热环境下复合材料层合板的几何非线性分析[J]. 工程力学, 2005, 22(5): 59-63. |
[10] | Patel B P, Ganapathi M, Makhecha D P. Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory[J]. Composite Structures, 2002, 56(1): 25-34. |
[11] | Lee S Y, Sheu J J, Lin S M. In-plane vibrational analysis of rotating curved beam with elastically restrained root[J]. Journal of Sound and Vibration, 2008, 315(4-5): 1086-1102. |
[12] | Turhan ?, Bulut G. On nonlinear vibrations of a rotating beam[J]. Journal of Sound and Vibration, 2009, 322(1-2): 314-335. |
[13] | Shen G L, Hu G K. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006: 132-143. (in Chinese). 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006: 132-143. |