全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

复合材料宏观强度准则预测能力分析
Prediction ability analysis of macroscopic strength criteria for composites

DOI: 10.13801/j.cnki.fhclxb.20140925.001

Keywords: 复合材料,强度,失效准则,失效包线,预测能力
composites
,strength,failure criterion,failure envelope,prediction ability

Full-Text   Cite this paper   Add to My Lib

Abstract:

对复合材料宏观强度准则进行了总结和评述, 对最具有代表性的5种强度准则的预测能力进行了综合评估。首先, 由各强度准则得到了不同平面应力状态下AS4/3501-6材料的理论失效包线, 以此阐明了各强度准则的物理本质。然后, 考虑到强度的分散性, 采用Monte-Carlo方法并基于各强度准则建立了4种材料的概率失效包线和强度分散带。最后, 结合多组试验数据, 客观评估了各强度准则的预测能力。评估结果表明:各强度准则的预测结果都不可能完好地吻合所有的试验结果; 相比于Max-Stress准则、Hashin准则和Tsai-Wu准则, Puck准则和LaRC03准则的预测能力相对较好, 且对复合材料的损伤机理有更为合理的解释。 Macroscopic strength criteria for composites were summarized and reviewed. The prediction abilities of five of the most representative strength criteria were analyzed comprehensively. Firstly, the theoretical failure envelopes of AS4/3501-6 material under different plane stress states were established based on each strength criterion, which were used to show the physical significance of each strength criterion. Then, considering the dispersity of strength, probabilistic failure envelops and strength scattering zones for four kinds of materials were set up based on each of the strength criterion with the Monte-Carlo method. Finally, several groups of experiment data were adopted to evaluate the prediction abilities of each strength criterion objectively. The evaluation results show that prediction results of every strength criterion are impossible to match all of the test results perfectly. Compared to the Max-Stress criterion, Hashin criterion and Tsai-Wu criterion, the prediction abilities of Puck criterion and LaRC03 criterion are relatively better, and have more reasonable explanation for damage mechanisms of composites. 国家自然科学基金(11202098);江苏高校优势学科建设工程

References

[1]  Zinoviev P A, Grigoriev S V, Lebedeva O V, et al. The strength of multilayered composites under a plane-stress state[J]. Composites Science and Technology, 1998, 58(7): 1209-1223.
[2]  Bogetti T A, Hoppel C P R, Harik V M, et al. Predicting the nonlinear response and progressive failure of composite laminates[J]. Composites Science and Technology, 2004, 64(3-4): 329-342.
[3]  Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7): 1045-1067.
[4]  Christensen R M. Stress based yield/failure criteria for fiber composites[J]. International Journal of Solids and Structures, 1997, 34(5): 529-543.
[5]  Swanson S R, Messick M J, Tian Z. Failure of carbon/epoxy lamina under combined stress[J]. Journal of Composite Materials, 1987, 21(7): 619-630.
[6]  Wu E M, Scheublein J K. Laminate strength—A direct characterization procedure[J]. Composite Materials: Testing and Design, 1974, 546: 188-206.
[7]  Whitney J M, Stansbarger D L, Howell H B. Analysis of the rail shear test-applications and limitations[J]. Journal of Composite Materials, 1971, 5(1): 24-34.
[8]  Kawai M, Yajima S, Hachinohe A, et al. Off-axis fatigue behavior of unidirectional carbon fiber-reinforced composites at room and high temperatures[J]. Journal of Composite Materials,2001, 35(7): 545-576.
[9]  Liu K, Tsai S W. A progressive quadratic failure criterion for a laminate[J]. Composites Science and Technology, 1998, 58(7): 1023-1032.
[10]  Rotem A. Prediction of laminate failure with the ROTEM failure criterion[J]. Composites Science and Technology, 1998, 58(7): 1083-1094.
[11]  Daniel I M. Failure of composite materials[J]. Strain, 2007, 43(1): 4-12.
[12]  Tsai S W. Strength characteristics of composite materials, NASA/CR-224[R]. Washington D.C.: NASA, 1965.
[13]  Hoffman O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials, 1967, 1(2): 200-206.
[14]  Kim C H, Yeh H. Development of a new yielding criterion: The Yeh-Stratton criterion[J]. Engineering Fracture Mechanics, 1994, 47(4): 569-582.
[15]  Hashin Z, Rotem A. A Fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4): 448-464.
[16]  Hashin Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
[17]  Davila C G, Camanho P P, Rose C A. Failure criteria for FRP laminates[J]. Journal of Composite Materials, 2005, 39(4): 323-345.
[18]  Sun S E, Yamada C. Analysis of laminate strength and its distribution[J]. Journal of Composite Materials, 1978, 12(3): 275-284.
[19]  Chang K Y, Llu S, Chang F K. Damage tolerance of laminated composites containing an open hole and subjected to tensile loadings[J]. Journal of Composite Materials, 1991, 25(3): 274-301.
[20]  Hahn H T, Tsai S W. Nonlinear elastic behavior of unidirectional composite laminae[J]. Journal of Composite Materials, 1973, 7(1): 102-118.
[21]  Chang F K, Lessard L B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings. I: Analysis[J]. Journal of Composite Materials, 1991, 25(1): 2-43.
[22]  Shahid I, Chang F K. An accumulative damage model for tensile and shear failures of laminated composite plates[J]. Journal of Composite Materials, 1995, 29(7): 926-981.
[23]  Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 2002, 62(12-13): 1633-1662.
[24]  Knops M. Analysis of failure in fiber polymer laminates: The theory of Alfred Puck[M]. Berlin: Springer, 2008: 76-79.
[25]  Davila C G, Camanho P P. Failure criteria for FRP laminates in plane stress. NASA/TM-2003-212663[R]. Washington D.C.: NASA, 2003.
[26]  Nahas M N. Survey of failure and post-failure theories of laminated fiber-reinforced composites[J]. Journal of Composites Technology and Research, 1986, 8(4): 138-153.
[27]  Labossiere P, Neale K W. Macroscopic failure criteria for fibre-reinforced composite materials[J]. Solid Mechanics Archives, 1987, 12(2): 65-95.
[28]  Echaabi J, Trochu F, Gauvin R. Review of failure criteria of fibrous composite materials[J]. Polymer Composites, 1996, 17(6): 786-798.
[29]  Sun C T, Quinn B J, Tao J, et al. Comparative evaluation of failure analysis methods for composite laminates. DOT/FAA/AR-95/109[R]. Washington D.C.: NASA, 1996.
[30]  Orifici A C, Herszberg I, Thomson R S. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures,2008, 86(1-3): 194-210.
[31]  Soden P D, Hinton M J, Kaddour A S. A comparison of the predictive capabilities of current failure theories for composite laminates[J]. Composites Science and Technology, 1998, 58(7): 1225-1254.
[32]  Hinton M J, Soden P D. Predicting failure in composite laminates: The background to the exercise[J]. Composites Science and Technology, 1998, 58(7): 1001-1010.
[33]  Hinton M J, Kaddour A S, Soden P D. A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence[J]. Composites Science and Technology, 2002, 62(12-13): 1725-1797.
[34]  Soden P D, Hinton M J, Kaddour A S. Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: Failure exercise benchmark data[J]. Composites Science and Technology, 2002, 62(12-13): 1489-1514.
[35]  Hinton M J, Kaddour A S, Soden P D. A further assessment of the predictive capabilities of current failure theories for composite laminates: Comparison with experimental evidence[J]. Composites Science and Technology, 2004, 64(3-4): 549-588.
[36]  Cuntze R G, Freund A. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates[J]. Composites Science and Technology, 2004, 64(3-4): 343-377.
[37]  Tsai S W, Wu E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80.
[38]  Yeh H, Kim C H. The Yeh-Stratton criterion for composite materials[J]. Journal of Composite Materials, 1994, 28(10): 926-939.
[39]  Pinho S T, Davila C G, Camanho P P, et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity.NASA/TM-2005-213530[R]. Washington D.C.: NASA, 2005.
[40]  Hart-Smith L J. A new approach to fibrous composite laminate strength prediction[C]//Eighth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design. Washington D.C.: NASA, 1989: 663-693.
[41]  Theocaris P S. Weighing failure tensor polynomial criteria for composites[J]. International Journal of Damage Mechanics, 1992, 1(1): 4-46.
[42]  Echaabi J, Trochu F. Failure mode dependent strength criteria for composite laminates[J]. Journal of Reinforced Plastics and Composites, 1997, 16(10): 926-945.
[43]  Soden P D, Hinton M J, Kaddour A S. Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates[J]. Composites Science and Technology, 1998, 58(7): 1011-1022.
[44]  Pipes R B, Cole B W. On the off-axis strength test for anisotropic materials[J]. Journal of Composite Materials, 1973, 7(2): 246-256.
[45]  Matbuly M S, Nassar M. Elastostatic analysis of edge cracked orthotropic strips[J]. Acta Mechanica, 2003, 165(1-2): 17-25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133