全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

环氧树脂包覆聚磷酸铵微胶囊的制备及其对聚丙烯的阻燃效果
Preparation of epoxy resin coated ammonium polyphosphate microcapsules and their flame retardant effects on polypropylene

DOI: 10.13801/j.cnki.fhclxb.201503.007

Keywords: 聚磷酸铵,环氧树脂,聚丙烯,溶解度,极限氧指数,拉伸强度
ammonium polyphosphate
,epoxy resin,polypropylene,solubility,limiting oxygen index,tensile intension

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探究环氧树脂包覆聚磷酸(EP@APP)微胶囊对聚丙烯(PP)的阻燃效果, 首先, 采用原位聚合法以EP为外壳包覆APP, 制备了EP@APP微胶囊, 并将其与PP进行复合, 制备了EP@APP/PP复合材料。然后, 测试了EP@APP微胶囊的溶解性, 探讨了工艺参数对溶解性的影响; 考察了EP@APP微胶囊的耐水性, 并借助红外光谱分析了EP@APP微胶囊的表面官能团。最后, 测试了PP复合材料的极限氧指数、拉伸强度和热重曲线, 并分析了PP复合材料的热分解动力学。结果表明:当EP的加入量为APP的10wt%、固化剂加入量为EP加入量的15wt%时, 采用先于40 ℃下维持1 h、再于70 ℃下维持1 h的阶跃升温方法可制备包覆完全的EP@APP微胶囊; 该种微胶囊在水中溶解度低, 且具有良好的耐水性。在PP中添加EP@APP微胶囊后, PP复合材料的极限氧指数为35.5%, 达到V-0燃烧等级, 燃烧后的残炭量增多, 成炭效果明显优于直接添加APP的PP复合材料。与APP相比, EP@APP微胶囊对PP拉伸强度的破坏程度明显降低。EP@APP微胶囊的加入使PP复合材料的表观活化能由100.8 kJ/mol提高到127.5 kJ/mol, 改变了PP复合材料的热降解氧化过程, 且生成的残炭形成了稳定的保护炭层。研究结果表明EP@APP微胶囊可有效提高PP复合材料的阻燃性能。 In order to study the flame retardant effects of epoxy resin coated ammonium polyphosphate (EP@APP) microcapsules on polypropylene (PP), firstly, EP was used as the shell to coat APP by in situ polymerization method, then the EP@APP microcapsules were prepared, and it was compound with PP to prepare the EP@APP/PP composites. Secondly, solubility of EP@APP microcapsules was tested to explore the effects of process parameters on solubility. The water resistance was also investigated. With infrared spectroscopy, surface functional groups of EP@APP microcapsules were analyzed. Finally, limited oxygen index, tensile strength and thermogravimetric curves were tested and the thermal degradation kinetics of PP composites was analyzed. The results show that when the addition of EP is 10wt% of APP, and curing agent addition is 15wt% of EP, the completely coated EP@APP microcapsules were prepared by step heating method of maintaining 40 ℃ for 1 h, followed by maintaining 70 ℃ for 1 h. The solubility of the microcapsules in water is lower and the water resistance is good. After adding EP@APP microcapsules into PP, the limited oxygen index of PP composites is 35.5% and reaches V-0 burning class, the mass of residual char after burning increases, and the carbonize effect is better than that of PP composites which adding APP directly. Comparing with APP, the destructiveness of EP@APP microcapsules toward tensile strength of PP reduces obviously. The addition of EP@APP microcapsules makes the apparent activation energy of PP composites increases from 100.8 kJ/mol to 127.5 kJ/mol, and changes the thermal degradation oxidation process of PP composites, and a stable protecting carbon layer is formed by the generated residual char. The research results show that EP@APP microcapsules can improve the flame retardancy of PP composites effectively. 国家科技攻关项目(2007BAE58B03);上海市科委项目(10195801600)

References

[1]  Qu H Q, Wu J Q, Liu L, et al. Research progress in surface modification of ammonium polyphosphate[J]. China Plastics, 2013, 26(12): 93-97 (in Chinese). 屈红强, 武君琪, 刘磊, 等. 聚磷酸铵阻燃剂表面改性研究进展[J]. 中国塑料, 2013, 26(12): 93-97.
[2]  Zheng Z, Qiang L, Yang T, et al. Preparation of microencapsulated ammonium polyphosphate with carbon source-and blowing agent-containing shell and its flame retardance in polypropylene[J]. Journal of Polymer Research, 2014, 21(5): 1-15.
[3]  Liu S, Ren Q, Li J C, et al. Influence of Kevlar pulp on the properties of intumescent flame-retardant polypropylene. Acta Materiae Compositae Sinica, 2013, 30(5): 79-85 (in Chinese). 刘石, 任强, 李锦春, 等. 芳纶浆粕对膨胀阻燃聚丙烯性能影响[J]. 复合材料学报, 2013, 30(5): 79-85.
[4]  Lü M F, Liu T, Zhang S J. Thermal degradation and combustion behavior of polypropylene[J]. Chinese Synthetic Resin and Plastics, 2007, 24(6): 14-17 (in Chinese). 吕明福, 刘涛, 张师军. 聚丙烯的热降解和燃烧行为[J]. 合成树脂及塑料, 2007, 24(6): 14-17.
[5]  Chou C S, Lin S H, Wang C I, et al. A hybrid intumescent fire retardant coating from cake-and eggshell-type IFRC[J]. Powder Technology, 2010, 198(1): 149-156.
[6]  Lu L G, Xu X N, Wang D W, et al. Preparation and flame retardancy of intumescent flame-retardant polypropylene[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 83-89 (in Chinese). 卢林刚, 徐晓楠, 王大为, 等. 新型无卤膨胀阻燃聚丙烯的制备及阻燃性能[J]. 复合材料学报, 2013, 30(1): 83-89.
[7]  Bras M L, Bugajny M, Lefebvre J M, et al. Use of polyurethanes as char-forming agents in polypropylene intumescent formulations[J]. Polymer International, 2000, 49(10): 1115-1124.
[8]  Ruban L, Zaikov G. Importance of intumescence in problem of polymers fire retardancy[J]. Polymer Material, 2000, 23(1): 1-11.
[9]  General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 2408—1996 Plastics—Determination of the burning behaviour of horizontal and vertical specimens in contact with a small-flame ignition source[S]. Beijing: Standards Press of China, 1996 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. GB/T 2408—1996 塑料燃烧性能试验方法 水平法和垂直法[S]. 北京: 中国标准出版社, 1996.
[10]  Li J J, Ou Y X. Theory of flame retardant[M]. Beijing: Science Press, 2013: 85-99 (in Chinese). 李建军, 欧育湘. 阻燃理论[M]. 北京: 科学出版社, 2013: 85-99.
[11]  Wang Z Z, Zhang B, Kong Q F, et al. Preparation and application of microencapsulated flame retardants[J]. Polymer Materials Science and Engineering, 2011, 27(12): 163-166 (in Chinese). 王正洲, 章斌, 孔清锋, 等. 阻燃剂微胶囊制备及在聚合物中的应用研究进展[J]. 高分子材料科学与工程, 2011, 27(12): 163-166.
[12]  Liu J C, Yu Z L, Chen L, et al. Halogen-free flame retardant Mg(OH)2Al(OH)3 MRP/HIPS composites[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 35-43 (in Chinese). 刘继纯, 于卓立, 陈梁, 等. Mg(OH)2-Al(OH)3-微胶囊红磷/高抗冲聚苯乙烯无卤阻燃复合材料[J]. 复合材料学报, 2013, 30(4): 35-43.
[13]  Spontón M, Mercado L A, Ronda J C, et al. Preparation, thermal properties and flame retardancy of phosphorus-and silicon-containing epoxy resins[J]. Polymer Degradation and Stability, 2008, 93(11): 2025-2031.
[14]  Wu K, Wang Z Z, Liang H J. Microencapsulation of ammonium polyphosphate: Preparation, characterization, and its flame retardance in polypropylene[J]. Polymer Composites, 2008, 29(8): 854-860.
[15]  Deng C L, Deng C, Zhao J, et al. Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin[J]. Polymers for Advanced Technologies, 2014, 25(8): 861-871.
[16]  General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 1040—2006 Plastics—Determination of tensile properties[S]. Beijing: Standards Press of China, 2006 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. GB/T 1040—2006塑料拉伸性能试验方法[S]. 北京: 中国标准出版社, 2006.
[17]  General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 2406—1993 Plastics—Determination of flammability by oxygen index[S]. Beijing: Standards Press of China, 1993 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. GB/T 2406—1993塑料燃烧性能试验方法 氧指数法[S]. 北京: 中国标准出版社, 1993.
[18]  Yang B J, Xue Z H, Wang B N, et al. Preparation and modification of layered double hydroxides and application in polypropylene as flame retardant[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 353-361 (in Chinese). 杨保俊, 薛中华, 王百年, 等. 类水滑石的制备与改性及其在聚丙烯阻燃中的应用[J]. 复合材料学报, 2014, 31(2): 353-361.
[19]  Camino G, Grassie N, McNeill I C. Influence of the fire retardant, ammonium polyphosphate, on the thermal degradation of poly (methyl methacrylate)[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16(1): 95-106.
[20]  Gao M, Wu W, Yan Y. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant[J]. Journal of Thermal Analysis and Calorimetry, 2009, 95(2): 605-608.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133