|
- 2015
氧化石墨烯/聚氨酯杂化膜的原位聚合构建及气体渗透性
|
Abstract:
采用Hummers法制备了3种不同氧化程度的氧化石墨烯(GO), 通过聚氨酯(PU)单体(4, 4'-二异氰酸苯酯(MDI)和1, 4-丁二醇(BDO))与GO的原位聚合构建了GO/PU杂化膜。利用XRD、Raman、FTIR和TEM等表征了GO的结构; 探讨了GO填充量对GO/PU杂化膜的形貌和CO2、N2渗透性的影响。结果表明:3种不同氧化程度的GO均呈完全剥离状态, 为半透明片状结构; 随着氧化程度的增加, 拉曼D峰与G峰的相对强度比分别为0.947、1.103和1.245; GO的氧化程度对GO在溶剂和杂化膜中的分散性有较大影响, 氧化程度越高, 分散性越好。GO/PU杂化膜的CO2、N2渗透系数及CO2/N2渗透选择因子均随GO填充量的增加先增大后减小; 当中等氧化程度的GO(M-GO)与(MDI+BDO)的质量比为1.0%时, M-GO/PU杂化膜的CO2渗透系数为63.6×10-13 cm3(STP)/(cm·Pa·s), 其中STP表示标准温度及压力, CO2/N2渗透选择因子可达48.5; 填充适量的GO能显著提高GO/PU杂化膜的CO2渗透性及CO2/N2渗透选择性。 Three kinds of graphene oxide (GO) with different oxidation degrees were synthesized by Hummers method. The GO/polyurethane (PU) mixed matrix membranes were fabricated via in-situ polymerization of PU monomers (Methylene Diphenyl 4, 4'-Diisocyanate (MDI) and 1, 4-Butanediol (BDO)) with GO. The structure of GO was characterized by XRD, Raman, FTIR and TEM etc. The effects of GO filling content on the morphology and permeabilities of CO2 and N2 of GO/PU mixed matrix membranes were discussed. The results reveal that the three kinds of GO with different oxidation degrees present a state of complete stripping, and are translucent sheet structure, and with the increasing of oxidation degree, the relative intensities of D peak to G peak in Raman are 0.947, 1.103 and 1.245. The oxidation degree of GO has greater effects on the dispersibility of GO in solution and mixed matrix membrane, when the oxidation degree is higher, the dispersibility is better. The permeability coeffcients of CO2 and N2 and CO2/N2 permeation selectivity factor of GO/PU mixed matrix membrane increase firstly and then decrease with GO filling content increasing. When the mass ratio of middle oxidation degree GO (M-GO) to (MDI+BDO) reaches 1.0%, the CO2 permeability coefficient of M-GO/PU mixed matrix membrane is 63.6×10-13 cm3(STP)/(cm·Pa·s), STP represents for standard temperature and pressure, and the permeation selectivity factor of CO2/N2 reaches 48.5. The filling of appropriate amount of GO could significantly improve the permeability of CO2 and the CO2/N2 permeation selectivity of GO/PU mixed matrix membrane. 国家自然科学基金(21376218,21076190)
[1] | Semsarzadeh M A, Ghalei B. Preparation, characterization and gas permeation properties of polyurethane-silica/polyvinyl alcohol mixed matrix membranes[J]. Journal of Membrane Science, 2013, 432: 115-125. |
[2] | Li X G, Kresse I, Xu Z K, et al. Effect of temperature and pressure on gas transport in ethyl cellulose membrane[J]. Polymer, 2001, 42(16): 6801-6810. |
[3] | Khan F Z, Sakaguchi T, Shiotsuki M, et al. Synthesis, characterization, and gas permeation properties of silylated derivatives of ethyl cellulose[J]. Macromolecules, 2006, 39(18): 6025-6030. |
[4] | Ikeuchi Y, Khan F Z, Onishi N, et al. Amino acid-functionalized ethyl cellulose: Synthesis, characterization, and gas permeation properties[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48(18): 3986-3993. |
[5] | Wu T T, Xue Q Z, Ling C C, et al. Fluorine-modified porous graphene as membrane for CO2/N2 separation: Molecular dynamic and first-principles simulations[J]. The Journal of Physical Chemistry C, 2014, 118(14): 7369-7376. |
[6] | Schrier J. Fluorinated and nanoporous graphene materials as sorbents for gas separations[J]. Applied Materials Interfaces, 2011, 3(11): 4451-4458. |
[7] | Lee J, Aluru N R. Water-solubility-driven separation of gases using graphene membrane[J]. Journal of Membrane Science, 2012, 428: 546-553. |
[8] | Scholes C A, Stevens G W, Kentish S E. Membrane gas separation applications in natural gas processing[J]. Fuel, 2012, 96: 15-28. |
[9] | Xiao Y, Low B T, Hosseini S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science, 2009, 34(6): 561-580. |
[10] | Pandiyan S, Brown D, Neyertz S, et al. Carbon dioxide solubility in three fluorinated polyimides studied by molecular dynamics simulations[J]. Macromolecules, 2010, 43(5): 2605-2621. |
[11] | Neyertz S, Brown D, Pandiyan S, et al. Carbon dioxide diffusion and plasticization in fluorinated polyimides[J]. Macromolecules, 2010, 43(18): 7813-7827. |
[12] | Qiu W, Chen C C, Xu L, et al. Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation[J]. Macromolecules, 2011, 44(15): 6046-6056. |
[13] | Junaidi M U M, Leo C P, Kamal S N M, et al. Carbon dioxide removal from methane by using polysulfone/SAPO-44 mixed matrix membranes[J]. Fuel Processing Technology, 2013, 112: 1-6. |
[14] | Kim H W, Park H B. Gas diffusivity, solubility and permeability in polysulfone-poly(ethylene oxide) random copolymer membranes[J]. Journal of Membrane Science, 2011, 372(1-2): 116-124. |
[15] | Camacho-Zuniga C, Ruiz-Trevino F A, Hernández-López S, et al. Aromatic polysulfone copolymers for gas separation membrane applications[J]. Journal of Membrane Science, 2009, 340(1-2): 221-226. |
[16] | Sadeghi M, Talakesh M M, Ghalei B, et al. Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane[J]. Journal of Membrane Science, 2013, 427: 21-29. |
[17] | Burress J W, Gadipelli S, Ford J, et al. Graphene oxide framework materials: Theoretical predictions and experimental results[J]. Angewandte Chemie International Edition, 2010, 49(47): 8902-8904. |
[18] | Blankenburg S, Bieri M, Fasel R, et al. Pignedoli and daniele passerone, porous graphene as an atmospheric nanofilter[J]. Small, 2010, 6(20): 2266-2271. |
[19] | Shan M X, Xue Q Z, Jing N N, et al. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membrane[J]. Nanoscale, 2012, 4(17): 5477-5482. |
[20] | Ren F, Zhu G M, Ren P G. The latest advances in preparation and application of nano graphene composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 263-272 (in Chinese). 任芳, 朱光明, 任鹏刚. 纳米石墨烯复合材料的制备及应用研究进展[J]. 复合材料学报, 2014, 31(2): 263-272. |
[21] | Fan W, Zhang C, Liu T X. Recent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 14-21 (in Chinese). 樊玮, 张超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1): 14-21. |
[22] | Zhang Y, Wang Z, Yi C H, et al. Preparation and performance of VSA-SA/PS fixed carrier membrane for CO2/CH4 separation[J]. Journal of Chemical Industry and Engineering, 2006, 57(1): 163-168 (in Chinese). 张颖, 王志, 伊春海, 等. VSA-SA/PS固定载体复合膜的制备及其CO2/CH4分离性能[J]. 化工学报, 2006, 57(1): 163-168. |
[23] | Han Z D, Wang J Q. XRD/XPS study on oxidation of graphite[J]. Chinese Journal of Inorganic Chemistry, 2003, 19(12): 1336-1370 (in Chinese). 韩志东, 王建祺. 石墨氧化过程的XRD/XPS研究[J]. 无机化学学报, 2003, 19(12): 1366-1370. |
[24] | Saffarzadeh A. Modeling of gas adsorption on graphene nanoribbons[J]. Journal of Applied Physics, 2010, 107(11): 114309. |
[25] | d'Alessandro D M, Smit B, Long J R. Carbon dioxide capture: Prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. |
[26] | Du H L, Li J Y, Zhang J, et al. Separation of hydrogen and nitrogen gases with porous graphene membrane[J]. The Journal of Physical Chemistry C, 2011, 115(47): 23261-23266. |
[27] | Drahushuk L W, Strano M S. Mechanisms of gas permeation through single layer graphene[J]. Langmuir, 2012, 28(48): 16671-16678. |
[28] | Hankel M, Jiao Y, Du A J, et al. Asymmetrically decorated, doped porous graphene as an effective membrane for hydrogen isotope separation[J]. The Journal of Physical Chemistry C, 2012, 116(11): 6672-6676. |
[29] | Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107. |
[30] | Wojtoniszak M, Mijowska E. Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale[J]. Journal of Nanoparticle Research, 2012, 14(11): 1-7. |
[31] | Bhown A S, Freeman B C. Analysis and status of post-combustion carbon dioxide capture technologies[J]. Environmental Science & Technology, 2011, 45(20): 8624-8632. |
[32] | Basu S, Khan A L, Cano-Odena A, et al. Membrane-based technologies for biogas separations[J]. Chemical Society Reviews, 2010, 39(2): 750-768. |
[33] | Dorosti F, Omidkhah M R, Pedram M Z, et al. Fabrication and characterization of polysulfone/polyimide-zeolite mixed matrix membrane for gas separation[J]. Chemical Engineering Journal, 2011, 171(3): 1469-1476. |
[34] | Wahab M F A, Ismail A F, Shilton S J. Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers[J]. Separation and Purification Technology, 2012, 86: 41-48. |
[35] | Hassanajili S, Masoudi E, Karimi G, et al. Mixed matrix membranes based on polyetherurethane and polyesterurethane containing silica nanoparticles for separation of CO2/CH4 gases[J]. Separation and Purification Technology, 2013, 116: 1-12. |
[36] | Hassanajili S, Khademi M, Keshavarz P. Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes[J]. Journal of Membrane Science, 2014, 453: 369-383. |
[37] | Chen Y F, Zhao L, Ding L F, et al. Gas permeation property of MWCNT/polyurethane mixed matrix membranes prepared by in situ polymerization[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(10): 2301-2307 (in Chinese). 陈雨霏, 赵丽, 丁龙飞, 等. 碳纳米管/聚氨酯杂化膜的原位聚合构建及气体渗透性能[J]. 无机化学学报, 2014, 30(10): 2301-2307. |
[38] | Li X G, Kresse I, Springer J, et al. Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose[J]. Polymer, 2001, 42(16): 6859-6869. |
[39] | Li X G, Huang M R, Kresse I, et al. Gas transport in bisphenol a poly (ether ether ketone ketone) membrane[J]. Polymer, 2001, 42(19): 8113-8124. |
[40] | Qin X, Meng Q, Feng Y, et al. Graphene with line defect as a membrane for gas separation: Design via a first-principles modeling[J]. Surface Science, 2013, 607: 153-158. |
[41] | Ismail A F, Goh P S, Sanip S M, et al. Transport and separation properties of carbon nanotube-mixed matrix membrane[J]. Separation and Purification Technology, 2009, 70(1): 12-26. |
[42] | Cong H, Zhang J, Radosz M, et al. Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation[J]. Journal of Membrane Science, 2007, 294(1): 178-185. |
[43] | Yang Y H, Sun H J, Peng T J, et al. Synthesis and structural characterization of graphene-based membranes[J]. Acta Physico-Chimica Sinica, 2011, 27(3): 736-742 (in Chinese). 杨勇辉, 孙红娟, 彭同江, 等. 石墨烯薄膜的制备和结构表征[J]. 物理化学学报, 2011, 27(3): 736-742. |