|
- 2015
仿甲虫鞘翅轻质结构及其参数优化设计
|
Abstract:
为研发新型轻质结构, 在对甲虫鞘翅断面微结构进行观测的基础上, 分析了甲虫鞘翅的微观结构特征, 并据此设计和制备了基于碳纤维/环氧树脂复合材料的仿生轻质结构。对仿生轻质结构进行准静态压缩试验, 同时利用有限元法对仿生轻质结构进行压缩性能分析, 并将分析结果与试验结果进行对比, 证明了有限元分析的正确性和可靠性。在此基础上进一步利用响应面法对仿生轻质结构进行参数优化设计。结果显示:压缩载荷下仿生轻质结构的最大承载力为18 455.00 N, 较优化前结构的提高了26.4%, 压缩比强度为47.43 MPa/(g·cm-3), 优化效果显著。 In order to develop novel lightweight structure, based on the observation of the cross-sectional microstructure of beetle's elytra, the morphological features of beetle's elytra were analyzed, hereby a bio-inspired lightweight structure made by carbon fiber/epoxy composites was designed. The quasi-static compression test was carried out on bio-inspired lightweight structure, and finite element method was used at the same time to analyse the compressive ability of bio-inspired lightweight structure. The analytical results and the test results were compared, which proved the correctness and effectiveness of the finite element analysis. In addition, the optimum design of parameters of the bio-inspired lightweight structure was conducted by response surface method. The results reveal the maximum bearing capacity of bio-inspired lightweight structure under compressive load reaches 18 455.00 N, which increased by 26.4% compared with the structure before optimization, and its specific compressive strength reaches 47.43 MPa/(g·cm-3), the optimal effect is remarkable. 国家重点基础研究发展计划子课题(2011CB302106);国家自然科学基金(51175249,51105201);航空科学基金(2013ZF52072);教育部博士点基金(20123218110010)
[1] | Cui F Z, Zheng C L. Biomimetic materials[M]. Beijing: Chemical Industry Press, 2004:1-2 (in Chinese). 崔福斋, 郑传林. 仿生材料[M]. 北京: 化学工业出版社, 2004: 1-2. |
[2] | Wang G L, Ren L Q, Chen B C. The fractal character about the distribution of geometric unsmoothed structural units on dung beetle's cuticle[J]. Transactions of the Chinese Society of Agricultural Machinery, 1997, 28(4): 5-9 (in Chinese). 王国林, 任露泉, 陈秉聪. 蜣螂体表几何非光滑结构单元分布的分形特性[J]. 农业机械学报, 1997, 28(4): 5-9. |
[3] | Vincent J F V, Wegst U G K. Design and mechanical properties of insect cuticle[J]. Arthropod Structure & Development, 2004, 33(3): 187-199. |
[4] | Gorb S N, Goodwyn P J. Wing-locking mechanisms in aquatic heteroptera[J]. Journal of Morphology, 2003, 257(2): 127-146. |
[5] | Goodwyn P J, Gorb S N. Attachment forces of the hemelytra-locking mechanisms in aquatic bugs (Heteroptera: Belostomatidae)[J]. Journal of Insect Physiology, 2003, 49(8): 753-764. |
[6] | Yu Q Q, Yang Z X, Dai Z D, et al. Structure and mechanical properties of Cybister elytra [J]. Progress in Natural Science, 2006, 16(3): 365-369 (in Chinese). 虞庆庆, 杨志贤, 戴振东, 等. 东方龙虱鞘翅微结构及力学性能研究[J]. 自然科学进展, 2006, 16(3): 365-369. |
[7] | Yang Z X, Dai Z D, Guo C. Morphology and mechanical properties of Cybister elytra[J]. Chinese Science Bulletin, 2010, 55(8): 771-776. |
[8] | Yang Z X. Research on microstructures, mechanical properties and coupling mechanism of beetle elytra[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese). 杨志贤. 甲虫鞘翅材料的微结构、力学性能及联接机制的仿生研究[D]. 南京: 南京航空航天大学, 2009. |
[9] | Dai Z D, Yang Z X. Macro-/micro-structures of elytra, mechanical properties of the biomaterial[J]. Journal of Bionic Engineering, 2010, 7(1): 6-12. |
[10] | Dou J Z, Guo C, Dai Z D. Mechanical properties of the exocuticle and sections of Cybister elytra[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 181-185 (in Chinese). 窦君智, 郭策, 戴振东. 东方龙虱鞘翅内表皮层及断面硬度和弹性模量[J]. 复合材料学报, 2011, 28(5): 181-185. |
[11] | Yang Z X, Dai Z D, Wang W Y. Morphology and adhesive characteristics of Cybister(male) fore-foot's adhesive pads[J]. Acta Materiae Compositae Sinica, 2009, 26(3): 213-218 (in Chinese). 杨志贤, 戴振东, 王卫英. 东方龙虱(雄性)抱握足形态学及吸附特性[J]. 复合材料学报, 2009, 26(3): 213-218. |
[12] | Guo C, Song W W, Dai Z D. Structural design inspired by beetle elytra and its mechanical properties[J]. Chinese Science Bulletin, 2012, 57(8): 941-947. |
[13] | Song W W, Guo C, Dai Z D. Mechanical properties of beetle's elytra-inspired lightweight structures[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(10): 23-26 (in Chinese). 宋文伟, 郭策, 戴振东. 仿甲虫鞘翅轻质结构的力学性能研究[J]. 机械科学与技术, 2010, 29(10): 23-26. |
[14] | Zhou Y, Guo C, Zhu C S, et al. Study on design and mechanical properties of beetle's elytra-inspired lightweight structures with filament winding[J]. China Mechanical Engineering, 2011, 22(16): 1969-1973 (in Chinese). 周怡, 郭策, 朱春生, 等. 具有层状纤维缠绕的仿甲虫鞘翅轻质结构的设计及其力学性能分析[J]. 中国机械工程, 2011, 22(16): 1969-1973. |
[15] | Yang N B, Zhang Y N. Composite materials for aircraft structures[M]. Beijing: Aviation Industry Press, 2002: 45 (in Chinese). 杨乃宾, 章怡宁. 复合材料飞机结构设计[M]. 北京: 航空工业出版社, 2002: 45. |
[16] | Wu L L, Yao W X. Two-level collaborative optimum design method for composite stiffened panel[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5): 645-649 (in Chinese). 吴莉莉, 姚卫星. 复合材料加筋板结构的二级协同优化设计方法[J]. 南京航空航天大学学报, 2011, 43(5): 645-649. |
[17] | de Visser I J A P. Aeroelastic and strength optimization of a composite aircraft wing using a multilevel approach[C]//Proceedings of the 40th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1999: 601-610. |
[18] | Muc A, Gurba W. Genetic algorithms and finite element analysis in optimization of composite structures[J]. Composite Structures, 2001, 54(2-3): 275-281. |
[19] | Chen J X, Wu G. Beetle forewings: Epitome of the optimal design for lightweight composite materials[J]. Carbohydrate Polymers, 2013, 91(2): 659-665. |