全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

用于变形机翼夹心式柔性伸缩蒙皮的梯形蜂窝支撑结构
Trapezoidal cellular support structure applied to flexible telescopic sandwich skin of morphing wing

DOI: 10.13801/j.cnki.fhclxb.20140917.001

Keywords: 变形机翼,梯形蜂窝,柔性蒙皮,弹性模量,有限元分析
morphing wing
,trapezoidal cellular,flexible skin,elastic modulus,finite element analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

变形机翼技术的实现离不开柔性蒙皮技术的支持,提出了一种应用于变形机翼夹心式柔性伸缩蒙皮的面内褶皱型梯形蜂窝蒙皮支撑结构。通过理论分析研究了该支撑结构的面内伸缩特性, 得到其面内横向无量纲化等效弹性模量大小与3个参数(形状系数k 、宽度系数 t 和高度系数 h)之间的关系: 其等效弹性模量随 k 增大而减小, 随 t 增大而增大, 随 h 增大而减小。利用ANSYS软件对其进行了有限元分析并通过实验对其面内力学特性进行了验证。结果表明:理论分析、有限元结果与实验结果基本吻合。通过选择合适的结构参数, 其面内横向等效弹性模量可达到原材料弹性模量的10-4, 比同等参数下手风琴式支撑结构的面内横向等效弹性模量更小, 变形能力更强。相比传统蒙皮支撑结构, 该结构可以减小变形过程中的驱动力与能量消耗, 提高柔性蒙皮的变形效率。 An in-plane corrugated trapezoidal cellular supporting structure applied to flexible telescopic sandwich skin of morphing wing was proposed. By analyzing the in-plane scaling properties of the supporting structure, the relationship between the in-plane transverse dimensionless equivalent elastic modulus and the three parameters (shape coefficient k, width coefficient t and height coefficient h) was obtained.The equivalent elastic modulus decreases with the increase of k or h, and increases with the increase of t. Finite element analysis were carried out with ANSYS software, and the in-palne mechanical characteristics were demonstrated through experiment. The results show that the theoretical analysis and finite element analysis was basically consistent with the experimental results. By selecting appropriate structure parameters, the in-plane transverse equivalent elastic modulus can be as low as 10-4 of the raw material, smaller than the accordion cellular supporting structure with the same parameters, which means that the trapezoidal cellular has stronger ability of transformation. Compared with traditional support structures, this structure may reduce the driving force required and energy consumed during morphing, and improve the morphing efficiency of the flexible skin. 国家自然科学基金(50905085);机械结构力学及控制国家重点实验室(南京航空航天大学)自主研究课题(0415G01);中央高校基本科研业务费专项资金(2015B02914)

References

[1]  Barbarino S, Bilgen O, Ajaj R M, et al.A review of morphing aircraft[J].Journal of Intelligent Material System Structures, 2011,22(9): 823-877.
[2]  Daniel C, Vladimir B, Patrick T. Aerostructural model for morphing laminar wing optimization in a wind tunnel[J]. Journal of Aircraft, 2011, 48(1):66-76.
[3]  Thill C, Etches J, Bond I, et al. Weaver. Morphing skins [J]. The Aeronautical Journal, 2008,112(1129): 117-139
[4]  Ramrakhyani D S, Lesieutre G A, Frecker M, et al. Aircraft structural morphing using tendon-actuated compliant cellular trusses[J]. Journal of Aircraft, 2005, 42 (6):1615-1621.
[5]  Senba A, Ogi Y, Kogiso N. Wrinkle/slack control using shape memory ploymer films for large membrane structures[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013: 1-9.
[6]  Olympio K R,Gandhi F.Zero-v cellular honeycomb flexible skins for one-dimensional wing morphing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,and Materials Conference. Reston: AIAA, 2007: 23-26.
[7]  Bubert E A,Woods B K S, Keejoo L, et al.Design and fabrication of a passive 1D morphing aircraft skin[J]. Journal of Intelligent Material System Structures, 2010, 21(17):1699-1717.
[8]  Fan Q S. Mechanics of material [M]. Secong Edition.Beijing: Higher Education Press, 2005:72-111(in Chinese). 范钦珊.材料力学[M].第2版.北京: 高等教育出版社, 2005:72-111.
[9]  Yokozeki T, Takeda S I, Ogasawara T, et al. Mechanical properties of corrugated composites for candidate materials of flexible wing structures[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37 (10):1578-1586.
[10]  Icardi U, Ferrero L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators [J]. Materials and Design, 2009, 30(10):4200-4210.
[11]  Weisshaar T A. Morphing aircraft systems: Historical perspectives and future challenges [J]. Journal of Aircraft,2013, 50(2):337-353.
[12]  Sofla A Y N, Meguid S A, Tan K T, et al. Shape morphing of aircraft wing: Status and challenges [J].Materials and Design, 2010,31(3):1284-92.
[13]  Olympio K R, Gandhi F. Flexible skins for morphing aircraft using cellular honeycomb cores[J]. Journal of Intelligent Material System Structures,2010,21(17):1719-35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133