|
- 2015
石墨/酚醛树脂复合材料双极板的制备与性能
|
Abstract:
双极板是质子交换膜燃料电池的重要组成部分, 石墨与聚合物的复合材料双极板是目前研究的重要方向。采用模压热固化二步法, 以酚醛树脂为粘结剂、天然鳞片石墨为导电骨料、炭黑为添加剂制备了质子交换膜燃料电池用复合材料双极板。系统研究了不同种类石墨对石墨/酚醛树脂复合材料电性能和抗弯强度的影响。结果表明: 以天然鳞片石墨为导电原料时, 所制备的石墨/酚醛树脂双极板的性能最好; 添加导电炭黑能有效提高石墨/酚醛树脂复合材料的电导率; 在复合材料制备中加入4wt%的碳纤维, 碳纤维-石墨/酚醛树脂复合材料的抗弯强度提高了29%; 碳纤维表面液相氧化处理能有效提高纤维与基体间的结合强度, 随着处理时间的延长与处理温度的升高, 碳纤维-石墨/酚醛树脂复合材料的电导率和抗弯强度都有很大程度的提高; 最终固化温度主要影响酚醛树脂的交联程度, 随着最终固化温度的升高, 酚醛树脂的交联程度增加, 电导率增大, 但抗弯强度有一定程度减小。 Bipolar plate is an important part of proton exchange membrane fuel cell. The composite bipolar plate of graphite and polymer is the main direction of research. With phenolic resin as binder, natural flake graphite as conductive aggregate, carbon black as additive, the composite bipolar plate for proton exchange membrane fuel cell was prepared by using the molding and thermosetting two-step method. The effects of graphite species on conductive properties and flexural strength of graphite/phenolic resin composites were investigated and analyzed systematically. The results show that there will be the best performance when the natural flake graphite is used as conductive raw material. The electrical conductivity of the graphite/phenolic resin composites can be effectively improved if conductive carbon black is added. By adding 4wt% carbon fiber into composites, the flexural strength of the carbon fiber-graphite/phenolic resin composites is improved by 29%. The liquid phase oxidation processing of carbon fiber surface can effectively improve the bonding strength between the fibers and matrix. With the extending of processing time and elevating of processing temperature, electrical conductivity and flexural strength of carbon fiber-graphite/phenolic resin composites are greatly improved. The final curing temperature mainly affects the cross-linking degree of phenolic resins. With the increase of final curing temperature, the crosslinking degree of phenolic resin gets increased, and the electrical conductivity increases while flexural strength decreases to a certain extent. 湖南省科技重大专项(2013FJ1001-2);高校青年教师成长计划(531107040186)
[1] | Marr C, Li X G. Composition and performance modeling of catalyst layer in a proton exchange membrance fuel cell[J]. Journal of Power Sources, 1999, 77 (1): 17-27. |
[2] | Besmann M T, Klett W J, Henry J J. Carbon/carbon composite bipolar plate for proton exchange membrane fuel cells[J]. Journal of Electrochemical Society, 2000, 147(11):4083-4086. |
[3] | Wu J W, Hedao Q X. New carbon materials[M]. Liang J B, translated. Lanzhou: Lanzhou Carbon Plant Research Institute, 1981: 181-185 (in Chinese). 武井武, 河岛千寻. 新碳素材料[M]. 梁济博, 译. 兰州: 兰州碳素厂研究所, 1981: 181-185. |
[4] | Zhang F Q, Huang Q Z, Huang B Y, et al. Relationship between the degree of graphitization and the electrical conductivity of C/C composites [J]. New Carbon Materials, 2001, 16(2): 45-48 (in Chinese). 张福勤, 黄启忠, 黄伯云, 等. C/C复合材料石墨化度与导电性能的关系[J]. 新型炭材料, 2001, 16(2): 45-48. |
[5] | Chen W R. Carbon materials technology base [M]. Changsha: Hunan University Press, 1984: 30-34 (in Chinese). 陈蔚然.碳素材料工艺基础[M].长沙: 湖南大学出版社, 1984: 30-34. |
[6] | Nelson J R, Wissing W K. Importance of carbon black morophology on its use in electrically conductive polymer composites[J]. Carbon, 1984, 22(2): 230-238. |
[7] | Xia J T, Hu Z L, Chen Z H. Preparation of carbon brushes with thermosetting resin binder[J].Transactions of Nonferrous Metals Society of China, 2007, 17(6):1379-1384. |
[8] | Chen G, Cui C. An introduction to new material[M]. Beijing: Science Press, 2003: 223-224 (in Chinese). 陈光, 崔崇. 新材料概论[M]. 北京: 科学出版社, 2003: 223-224. |
[9] | Morozov I, Lauke B, Heinrich G. A new structural model of carbon black framework in rubbers[J]. Computational Materials Science, 2010, 47: 817-825. |
[10] | Flandin L, Prasse T, Schueler R. Anomalous percolation transition in carbon black epoxy composite materials[J]. Physical Review B, 1999, 59(22): 14349-14355. |
[11] | Lu G, Li X, Jiang H, et al. Electrical conductivity of carbon fibers/ABS resin composites mixed with carbon black[J]. Journal of Applied Polymer Science, 1996, 62: 2193-2199. |
[12] | Gu Y. Materials science and engineering[M]. Beijing:Chemical Industry Press, 2004: 226 (in Chinese). 顾宜. 材料科学与工程基础[M].北京: 化学工业出版社, 2004: 226. |
[13] | Wang Y M, Wang W Q, Li A J, et al. Mechanism analysis of influencing factors on electrical and mechanical properties of new graphite matrix composite[J]. Journal of Materials Science and Engineering, 2006, 24(1): 82-85 (in Chinese). 王彦明, 王威强, 李爱菊,等. 新型石墨基复合材料导电性能与力学性能影响因素的机理分析[J]. 材料科学与工程学报, 2006, 24(1): 82-85. |
[14] | Del Mondo J. Carbon fiber and graphite fiber compositematerial technology[M]. Li R Z, translated. Beijing: Science Press, 1987: 159-161 (in Chinese). 德尔蒙多J. 碳纤维和石墨纤维复合材料技术[M]. 李仍之,译. 北京: 科学出版社, 1987: 159-161. |
[15] | Liu J, Guo Y X, Liang J Y. Research on electrochemical oxidation of carbon fibers surface [J].Progress in Chemical Engineering, 2004, 23(3): 282 (in Chinese). 刘杰, 郭云霞, 梁节英. 碳纤维表面电化学氧化的研究[J]. 化工进展, 2004, 23(3): 282. |
[16] | Xu X F, Shen S J, Zhai Z W, et al. Study on the surface oxidation treatment increased the mechanical properties of the composite resin based carbon fiber[J]. Materials Review, 2009(21): 209-212 (in Chinese). 许小芳, 申世杰, 翟志文, 等. 表面氧化处理提高碳纤维增强树脂基复合材料力学性能的研究[J]. 材料导报, 2009(21):209-212. |
[17] | Dean D M, Marchione A A, Rebenfeld L, et al. Flexural properties of fiber-reinforced polypropylene composites with and without a transcrystalline layer[J]. Polymers for Advanced Technologies,1999, 10(11): 655-668. |
[18] | Shiba K, Tagaya M, Samitsu S, et al. Effective surface functionalization of carbon fibers for fiber/polymer composites with tailor-made interfaces[J]. ChemPlusChem, 2014, 79(2): 197-210. |
[19] | Chen Z Q. Preparation and studies on heat-resistance of high char yield phenolic resin applied to carbon/carbon composites [D]. Changsha: Hunan University, 2007 (in Chinese). 陈智琴. C/C复合材料用高成炭率酚醛树脂的制备及其耐热性能的研究[D].长沙: 湖南大学, 2007. |
[20] | Li M, Tucker C L. Optimal curing for thermoset matrix composites: Thermochemical and consolidations[J]. Polymer Composites, 2002, 23: 739-757. |
[21] | Hsiao K T, Little R, Restrepo O, et al. A study of direct cure kinetics characterization during liquid composite molding [J]. Composites Part A: Materials Science and Engineering, 2006, 37(6): 925-933. |
[22] | Mao Z Q. Full cells[M]. Beijing: Chemical Industry Press, 2005: 47-49 (in Chinese). 毛宗强. 燃料电池[M].北京: 化学工业出版社, 2005: 47-49. |
[23] | Husby H, Kongstein O E, Oedegaard A. Carbon-polymer composite coatings for PEM fuel cell bipolar plates[J]. International Journal of Hydrogen Energy, 2014,39: 951-957. |
[24] | Chen H, Liu H B, Li J X, et al. Characteristics and preparation of polymer/graphite composite bipolar plates for PEM fuel cells[J]. Journal of Composite Materials, 2009,43(7):755-767. |
[25] | Wilson M S. Composite bipolar plate for electrochemical cells: US Patent, 6248467[P].2001-06-19. |
[26] | Mercuri R A, Gough J J. Flexible graphite composite for use in the form of a fuel cell flow field plate: US Patent, 6037074[P]. 2000-03-14 |
[27] | Yin Y X, Ao X Y. The carbon fiber surface modification [J]. Space Return and Remote Sensing, 2004, 25(1): 51-54 (in Chinese). 殷永霞, 沃西源. 碳纤维表面改性研究进展[J]. 航天返回与遥感, 2004, 25(1): 51-54. |