|
- 2015
功能氧化石墨烯/热塑性聚氨酯复合材料薄膜的制备及阻隔性能
|
Abstract:
为了提高热塑性聚氨酯(TPU)的阻隔性能, 首先, 采用溶液成型的方法在涂膜机上制备了功能氧化石墨烯(IP-GO)/TPU复合材料薄膜。然后, 利用FTIR、XPS、XRD、FE-SEM、原子力显微镜和氧气透过仪对IP-GO/TPU复合材料的形貌和性能进行了表征。结果表明:IP-GO层间距相对原始鳞片石墨的增加了0.696 nm, 片层的厚度为1.2 nm左右。IP-GO以褶皱层状的形式均匀分散在TPU基体中, 并且包覆在复合材料薄膜断口表面。当IP-GO含量为3wt%时, IP-GO/TPU复合材料薄膜的氧气透过率为84.325 cm3/(m2·d·Pa), 相比纯TPU薄膜的280.973 cm3/(m2·d·Pa)下降了70%, 阻隔性能明显提高。研究解决了TPU薄膜阻隔性能不佳的问题, 为高阻隔聚合物的制备提供了一种思路和方法。 In order to improve the barrier properties of thermoplastic polyurethane (TPU), first, functional graphene oxide (IP-GO)/TPU composite films were prepared by solution casting method on the coating machine. Then, the morphologies and properties of IP-GO/TPU composite films were investigated by FTIR, XPS, XRD, FE-SEM, atomic force microscope and oxygen transmission rate tester. The results indicate that the layer spacing of IP-GO increases of 0.696 nm compared with the primitive flake graphite and the thickness of sheets is about 1.2 nm. IP-GO evenly dispersed in TPU matrix by form of fold layers, and coated on the fracture surfaces of composite films. When the contnent of IP-GO is 3wt%, the oxygen transmission rate of IP-GO/TPU composite film is 84.325 cm3/(m2·d·Pa), compared with the pure TPU film's value which is 280.973 cm3/(m2·d·Pa) decreases by 70%, reveals that the barrier property is improved significantly. The research solves the problem of poor barrier performance of TPU films, and provides a thought and a method for the preparation of high barrier polymers. 福建省高校产学合作科技重大关键资助项目(2012H6008);福州市科技计划(2013-G-92)
[1] | Li X G, Huang M R, Lu Y Q, et al. Synthesis and properties of processible copolymer microparticles from chloroanilines and aniline[J]. Journal of Materials Chemistry, 2005, 15(13): 1343-1352. |
[2] | General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 1038—2000 Oil well cement test method[S]. Beijing: Standards Press of China, 2000 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. GB/T 1038—2000 油井水泥试验方法[S]. 北京: 中国标准出版社, 2000. |
[3] | Herrera-Alonso J M, Marand E, Little J C, et al. Transport properties in polyurethane/clay nanocomposites as barrier material: Effect of processing conditions[J]. Journal of Membrane Science, 2009, 337(1): 208-214. |
[4] | Yoo B M, Shin H J, Yoon H W, et al. Graphene and graphene oxide and their uses in barrier polymers[J]. Journal of Applied Polymer Science, 2014, 131(1): 1-23. |
[5] | Avella M, de Vlieger J J, Errico M E, et al. Biodegradable starch/clay nanocomposite films for food packaging applications[J]. Food Chemistry, 2005, 93(3): 467-474. |
[6] | Cho A R, Kim E H, Park S Y, et al. Flexible OLED encapsulated with gas barrier film and adhesive gasket[J]. Synthetic Metals, 2014, 193: 77-80. |
[7] | Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
[8] | Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462. |
[9] | Lape N K, Nuxoll E E, Cussler E. Polydisperse flakes in barrier films[J]. Journal of Membrane Science, 2004, 236(1): 29-37. |
[10] | Kim H, Miura Y, Macosko C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11): 3441-3450. |
[11] | Xiang C, Cox P J, Kukovecz A, et al. Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances[J]. ACS Nano, 2013, 7(11): 10380-10386. |
[12] | Li X F, Jiang C, Peng S X, et al. Fabrication and wave shielding behavior of UV curing coating of carbon nanotubes/epoxy acrylate[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 10-15 (in Chinese). 李学锋, 江成, 彭少贤, 等. 碳纳米管/环氧丙烯酸酯紫外光固化涂层的制备及光阻隔性能[J].复合材料学报, 2011, 28(2): 10-15. |
[13] | Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006, 44(15): 3342-3347. |
[14] | Xiang C, Lu W, Zhu Y, et al. Carbon nanotube and graphene nanoribbon-coated conductive kevlar fibers[J]. ACS Applied Materials and Interfaces, 2011, 4(1): 131-136. |
[15] | Grenier S, Sandig M, Mequanint K. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells[J]. Journal of Biomedical Materials Research Part A, 2007, 82(4): 802-809. |
[16] | Santerre J, Woodhouse K, Laroche G, et al. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials[J]. Biomaterials, 2005, 26(35): 7457-7470. |
[17] | Fan W, Zhang C, Liu T X. Recent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 14-21 (in Chinese). 樊玮, 张超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1): 14-21. |
[18] | Li X G, Huang M R, Gang L. Temperature dependence and stability of oxygen enrichment through liquid crystalline triheptyl cellulose-containing membranes cast from three solvents[J]. Journal of Membrane Science, 1996, 116(2): 143-148. |
[19] | Li X G, Huang M R, Hu L, et al. Cellulose derivative and liquid crystal blend membranes for oxygen enrichment[J]. European Polymer Journal, 1999, 35(1): 157-166. |