全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨烯多壁碳纳米管/超高分子量聚乙烯导电复合材料的制备及性能

, PP. 36-41

Keywords: 石墨烯,碳纳米管,UHMWPE,导电复合材料,逾渗值

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了比较超高分子量聚乙烯(UHMWPE)在单一填充和混合填充时,复合材料导电性的差别。在超声和肼的作用下,通过对氧化石墨烯(GO)、多壁碳纳米管(MWCNTs)和超高分子量聚乙烯水/乙醇分散液减压蒸馏及热压制备了隔离型MWCNTs/UHMWPE、石墨烯(GNS)/UHMWPE和MWCNTs-GNS/UHMWPE导电复合材料。经SEM、TEM测试发现,导电填料分散于UHMWPE颗粒表面,热压后形成隔离结构。隔离型的MWCNTs/UHMWPE和GNS/UHMWPE复合材料均表现出较低的导电逾渗(0.148%和0.059%,体积分数,下同),但MWCNTs/UHMWPE复合材料的电导率(2.0×10-2S/m,1.0%,质量分数,下同)明显高于相同填料含量下的GNS/UHMWPE复合材料。MWCNTs-GNS/UHMWPE复合材料表现出了更低的逾渗(0.039%)和较高导电性能(1.0×10-2S/m,1.0%),其拉伸强度和断裂伸长率随填充剂含量的增加呈现出先上升后下降的趋势。

References

[1]  Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P, Liu C. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure [J]. Carbon, 2011, 49(4): 1094-1100.
[2]  Balogun Y A, Buchanan R C. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs) [J]. Compos Sci & Technol, 2010, 70(6): 892-900.
[3]  Eda G, Emrah U H, Rupesinghe N, Amaratunga G A J, Chhowalla M. Field emission from graphene based composite thin films [J]. Appl Phys Lett, 2008, 93(23): 233502-1-233502-3.
[4]  Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources [J]. Carbon, 2000, 38(2):169-182.
[5]  Wang J. Carbon-nanotube based electrochemical biosensors: A review [J]. Electroanalysis, 2005, 17(1): 7-14.
[6]  Pang H, Chen C, Zhang Y C, Ren P G, Yan D X, Li Z M. The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets [J]. Carbon, 2011, 49(6): 1980-1988.
[7]  Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials [J]. Nature, 2006, 442(7100): 282-286.
[8]  Xie S H, Liu Y Y, Li J Y. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes [J]. Appl Phys Lett, 2008, 92(24): 243121-243123.
[9]  Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Preparation and characterization of graphene oxide paper [J].Nature, 2007, 448: 457-460.
[10]  Chen H Q, Muller M B, Gilmore K J, Wallace G G, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper [J]. Adv Mater, 2008, 20(18): 3557-3561.
[11]  Pang H, Chen T, Zhang G M, Zeng B Q, Li Z M. An electrically conducting polymer/graphene composite with a very low percolation threshold [J]. Mater Lett, 2010, 64(20): 2226-2229.
[12]  Kumar S, Sun L L, Caceres S, Li B, Wood W, Perugini A, Maguire R G, Zhong W H. Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites [J]. Nanotechnology, 2010, 21(10): 105702.
[13]  Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'Homme R K, Car R, Saville D A, Aksay I A. Functionalized single graphene sheets derived from splitting graphite oxide [J]. J Phys Chem B, 2006, 110(17): 8535-8539.
[14]  Ren P G, Yan D Y, Ji X, Chen T, Li Z M. Temperature dependence of graphemeoxide reduced by hydrazine hydrate [J]. Nanotechnology, 2011, 22(5): 055705-1-022705-8.
[15]  Nilsson J, Neto A H C, Guinea F, Peres N M R. Electronic properties of graphene multilayers [J]. Phys Rev Lett, 2006, 97(26): 266801-1-266801-4.
[16]  Dresselhaus M S, Dresselhaus G, Charlier J C, Hernandez E. Electronic, thermal and mechanical properties of carbon nanotubes [J]. Phil Trans R Soc A, 2004, 362(1823): 2065-2098.
[17]  Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Lett, 2008, 8(3): 902-907.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133