Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P, Liu C. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure [J]. Carbon, 2011, 49(4): 1094-1100.
[2]
Balogun Y A, Buchanan R C. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs) [J]. Compos Sci & Technol, 2010, 70(6): 892-900.
[3]
Eda G, Emrah U H, Rupesinghe N, Amaratunga G A J, Chhowalla M. Field emission from graphene based composite thin films [J]. Appl Phys Lett, 2008, 93(23): 233502-1-233502-3.
[4]
Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources [J]. Carbon, 2000, 38(2):169-182.
[5]
Wang J. Carbon-nanotube based electrochemical biosensors: A review [J]. Electroanalysis, 2005, 17(1): 7-14.
[6]
Pang H, Chen C, Zhang Y C, Ren P G, Yan D X, Li Z M. The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets [J]. Carbon, 2011, 49(6): 1980-1988.
[7]
Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials [J]. Nature, 2006, 442(7100): 282-286.
[8]
Xie S H, Liu Y Y, Li J Y. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes [J]. Appl Phys Lett, 2008, 92(24): 243121-243123.
[9]
Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Preparation and characterization of graphene oxide paper [J].Nature, 2007, 448: 457-460.
[10]
Chen H Q, Muller M B, Gilmore K J, Wallace G G, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper [J]. Adv Mater, 2008, 20(18): 3557-3561.
[11]
Pang H, Chen T, Zhang G M, Zeng B Q, Li Z M. An electrically conducting polymer/graphene composite with a very low percolation threshold [J]. Mater Lett, 2010, 64(20): 2226-2229.
[12]
Kumar S, Sun L L, Caceres S, Li B, Wood W, Perugini A, Maguire R G, Zhong W H. Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites [J]. Nanotechnology, 2010, 21(10): 105702.
[13]
Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'Homme R K, Car R, Saville D A, Aksay I A. Functionalized single graphene sheets derived from splitting graphite oxide [J]. J Phys Chem B, 2006, 110(17): 8535-8539.
[14]
Ren P G, Yan D Y, Ji X, Chen T, Li Z M. Temperature dependence of graphemeoxide reduced by hydrazine hydrate [J]. Nanotechnology, 2011, 22(5): 055705-1-022705-8.
[15]
Nilsson J, Neto A H C, Guinea F, Peres N M R. Electronic properties of graphene multilayers [J]. Phys Rev Lett, 2006, 97(26): 266801-1-266801-4.
[16]
Dresselhaus M S, Dresselhaus G, Charlier J C, Hernandez E. Electronic, thermal and mechanical properties of carbon nanotubes [J]. Phil Trans R Soc A, 2004, 362(1823): 2065-2098.
[17]
Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Lett, 2008, 8(3): 902-907.