Van Lipzig H T M. Retardation of fatihue crack growth. Netherlands: Delft University, 1973.
[2]
Van G F J A. Crack growth in laminated sheet material and in panels with bonded or integral stiffeners. Netherlands: Delft University, 1975.
[3]
Hoeymarkers A H W. Fatigue of lugs. Netherlands: Delft University, 1977.
[4]
Marissen R. Fatigue crack growth in ARALL: A hybrid aluminium-aramid composite material crack growth mechanisms and quantitative predictions of the crack growth rate. Netherlands: Delft University of Technology, 1988.
[5]
Alderliesten R C, Benedictus R. Post-stretching induced stress redistribution in fibre metal laminates for increased fatigue crack growth resistance [J]. Composites Science and Technology, 2009, 69(3/4): 396-405.
[6]
Alderliesten R C. Analytical prediction model for fatigue crack propagation and delamination growth in Glare [J]. International Journal of Fatigue, 2007, 29(4): 628-646.
[7]
Alderliesten R C, Homan J J. Fatigue and damage tolerance issues of Glare in aircraft structures [J]. International Journal of Fatigue, 2006, 28(10): 1116-1123.
[8]
Khan S U, Alderliesten R C, Benedictus R. Delamination in fiber metal laminates (GLARE) during fatigue crack growth under variable amplitude loading [J]. International Journal of Fatigue, 2011, 33(9): 1292-1303.
[9]
Guo Yajun, Wu Xueren. A phenomenological model for predicting crack growth in fiber reinforced metal laminates under constant amplitude loading [J]. Composites Science and Technology, 1999, 59(12): 1825-1831.
[10]
郭亚军, 吴学仁. 纤维金属层板疲劳裂纹扩展速率与寿命预测的唯象模型 [J]. 航空学报, 1998, 19(3): 275-283. Guo Yajun, Wu Xueren. Phenomenological model for predicting fatigue crack growth in fiber reinforced metal laminates [J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(3): 275-283.
ASTM E 647-95a Standard test method for measurement of fatigue crack growth rates [S]//Annual Book of ASTM Standards. USA: ASTM, 1995: 565-601.
[14]
Zhang Jiazhen. A shear band decohesion model for small fatigue carck growth in an ultra-fine grain aluminium alloy [J]. Engineering Fracture Mechanics, 2000, 65(6): 665-681.
[15]
Zhang Jiazhen, He Xiaodong, Tang Hui. Direct high resolution in situ SEM observations of small fatigue crack opening profiles in the ultra-fine grain aluminium alloy [J]. Materials Science and Engineering A, 2008, 485(1/2): 115-118.
[16]
Zhang Jiazhen, Meng Zhaoxin. Direct high resolution in situ SEM observations of very small fatigue crack growth in the ultra-fine grain aluminium alloy in 9052 [J]. Scripta Materialia, 2004, 50(6): 825-828.
[17]
Zhang Jiazhen, He Xiaodong, Du Shanyi. Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method [J]. International Journal of Fatigue, 2005, 27(10-12): 1314-1318.
[18]
Zhang Jiazhen, He Xiaodong, Du Shanyi. Analysis of the effects of compressive stresses on fatigue crack propagation rate [J]. International Journal of Fatigue, 2007, 29(9-11): 1751-1756.
[19]
Irwin G R. Plastic zone near a crack tip and fracture toughness // Proceedings of the Seventh Sagamore Ordnance Material Conference: Mechanical and Metallurgical Behavior of Sheet Materials. Raquette Lake, New York: Sagamore Conference Center, 1960, 4: 63-78.
[20]
Oken S, June R R. Analytical and Experimental investigation of aircraft metal structure reinforced with filamentary composites, NASA/CR-1977-1895. Washington: NASA, 1977.