杜善义, 关志东. 我国大型客机先进复合材料应对策略思考 [J]. 复合材料学报, 2008, 25(1): 1-10. Du Shanyi, Guan Zhidong. Strategic considerations for development of advanced composite technology for large commercial aircraft in China [J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10.
[2]
Nicholls D J, Gallagher J P. Determination of GIC in angle-ply composites using a cantilever beam test method [J]. Reinf Plast Compos, 1983, 2: 2-17.
[3]
Chai H. The characterization of mode Ⅰ delamination failure in nonwoven, multidirectional laminates [J]. Composites, 1984, 15: 277-90.
[4]
Laksimi A, Benzeggah M L, Jing G, Hecini M, Roelandt J M. Mode Ⅰ interlaminar fracture of symmetrical cross-ply composites [J]. Compos Sci Technol, 1991, 41: 147-164.
[5]
Robinson P, Song D Q. A modified DCB specimen for mode- Ⅰ testing of multidirectional laminates [J]. J Compos Mater, 1992, 26: 1554-1577.
[6]
Meo M, Thieulot E. Delamination modeling in a double cantilever beam [J]. Compos Struct, 2005, 71: 429-434.
[7]
Sun C T, Jin Z H. Modeling of composite fracture using cohesive zone and bridging models [J]. Composites Science and Technology, 2006, 66: 1297-1302.
[8]
Hu N, Zemba Y, Okabe T, et al. A new cohesive model for simulating delamination propagation in composite laminates under transverse loads [J]. Mechanics of Materials, 2008, 40: 920-935.
[9]
Luo Quantian, Tong Liyong. Energy release rates for interlaminar delamination in laminates considering transverse shear effects [J]. Composite Structures, 2009, 89: 235-244.
[10]
Harper P W, Hallett S R. A fatigue degradation law for cohesive interface elements-Development and application to composite materials [J]. International Journal of Fatigue, 2010, 32: 1774-1787.
[11]
Xu X P, Needleman A. Numerical simulations of fast crack growth in brittle solids [J]. Journal of Mechanics and Physics of Solids, 1994, 42: 1397-1434.
[12]
Davies G A O, Zhang X. Impact damage prediction in carbon composite structures [J]. International Journal of Impact Engineering, 1995, 16: 149-170.
[13]
Segurado T M J, Llorca C T J. A new three-dimensional interface finite element to simulate fracture in composites [J]. International Journal of Solids and Structures, 2004, 41: 2977-2993.
[14]
Nishikawa M, Okabe T, Takeda N. Numerical simulation of interlaminar damage propagation in CFRP cross-ply laminates under transverse loading [J]. International Journal of Solids and Structures, 2007, 44: 3101-3113.
[15]
Hu N, Zemba Y, Fukunaga H, et al. Stable numerical simulations of propagations of complex damages in composite structures under transverse loads [J]. Composites Science and Technology, 2007a, 67: 752-765.
[16]
Turon A, Davila C G, Camanho P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models [J]. Engineering Fracture Mechanics, 2007, 74(10): 1665-1682.
[17]
ASTM D 5528-01, Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites [S]. USA: ASTM International, 2002.
[18]
Dávila C G, Camanho P P, Moura M F. Mixed-mode decohesion elements for analyses of progressive delamination //Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Seattle, Washington: AIAA, 2001.