全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

四边固支对称蜂窝夹层板主共振非线性动力学计算

, PP. 179-186

Keywords: 主共振,蜂窝夹层板,同伦分析法,四边固支,非线性

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用同伦分析方法(HAM)研究了四边固支对称蜂窝夹层板主共振情况下的非线性动力学特性。将铝基蜂窝芯层等效为一正交异性层,等效弹性参数由修正后的Gibson方程得出。基于经典叠层板理论(CPT)和几何大变形理论建立了四边固支蜂窝夹层板受横向激振力作用下的受迫振动微分方程,通过振型正交化将蜂窝夹层板受迫振动微分方程简化成双模态下的动力学控制方程,得到了主共振情况下的平均方程,研究了不同结构参数对动力学特性的影响。计算结果表明,蜂窝夹层板的幅频特性曲线类似单自由度Duffing方程响应曲线,随着结构参数的增大,硬特性明显加大并且振幅的峰值明显减小,所得结论可为蜂窝夹层板的设计和实际应用提供理论依据。

References

[1]  Yu S D, Cleghorn W L. Free flexural vibration analysis of symmetric honeycomb panels [J]. Journal of Sound and Vibration, 2005, 284(1): 189-204.
[2]  Li Y Q, Jin Z Q. Free flexural vibration analysis of symmetric rectangular honeycomb panels with SCSC edge supports [J]. Composite Structures, 2008, 83(2): 154-158.
[3]  Li Y Q, Zhu D W. Free flexural vibration analysis of symmetric rectangular honeycomb panels using the improved Reddy’s third-order plate theory [J]. Composite Structures, 2009, 88(1): 33-39.
[4]  Leissa A W, Martin A F. Vibration buckling of rectangular composite plates with variable fiber spacing [J]. Composite Structures, 1990, 14(4): 339-357.
[5]  Malekzadeh P. A differential quadrature nonlinear free vibration analysis of laminated composite skew thin plates [J]. Thin-Walled Structures, 2007, 45(2): 237-250.
[6]  Nilsson E, Nilsson A C. Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores [J]. Journal of Sound and Vibration, 2002, 251(3): 409-430.
[7]  徐胜今, 孔宪仁, 王本利, 等. 正交异性蜂窝夹层板动、 静力学问题的等效分析方法 [J]. 复合材料学报, 2000, 17(3): 92-95. Xu Shengjin, Kong Xianren, Wang Benli, et al. Method of equivalent analysis for statics and dynamics behavior of orthotropic honeycomb sandwich plates [J]. Acta Materiae Compositae Sinica, 2000, 17(3): 92-95.
[8]  Singha M K, Ganapathi M. Large amplitude free flexural vibrations of laminated composite skew plates [J]. Int J Non-linear Mech, 2004, 39(10): 1709-1720.
[9]  Sundararajana N, Prakash T, Ganapathi M. Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments [J]. Finite Element Anal Des, 2005, 42(2): 152-168.
[10]  Singha M K, Rupesh D. Nonlinear vibration of symmetrically laminated composite skew plates by finite element method [J]. International Journal of Non-Linear Mechanics, 2007, 42(9): 1144-1152.
[11]  Kim T W, Kim J H. Nonlinear vibration of viscoelastic laminated composite plates [J]. International Journal of Solids and Structures, 2002, 39(10): 2857-2870.
[12]  Argyris J, Tenek L, Olofsson L. Nonlinear free vibrations of composite plates [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 115(1): 1-51.
[13]  Swamy N V, Sinha P K. Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments [J]. Composite Structures, 2007, 77(4): 475-483.
[14]  富明慧, 尹久仁. 蜂窝芯层的等效弹性参数 [J]. 力学学报, 1999, 31(1): 113-118. Fu Minghui, Yin Jiuren. Equivalent elastic parameters of the honeycomb core [J]. Acta Mechanica Sinica, 1999, 31(1): 113-118.
[15]  Liao S J. A new branch of solutions of boundary-layer flows over an impermeable stretched plate [J]. Int J Heat Mass Transfer, 2005, 48(12): 2529-2539.
[16]  Liao S J. An explicit totally analytic approximation of Blasius viscous flow problems [J]. Int J Non-Linear Mech, 1999, 34(4): 759-778.
[17]  Liao S J. Series solutions of unsteady boundary layer flows over a stretching flat plate [J]. Stud Appl Math, 2006, 117(3): 239-264.
[18]  Liao S J. Beyond perturbation: Introduction to the homotopy analysis method [M]. Boca Raton: Chapman & Hall/CRC, 2003.
[19]  李 锋. 四边固支蜂窝夹层板非线性动力学分析 [D]. 沈阳: 东北大学, 2010.
[20]  周 履, 范赋群. 复合材料力学 [M]. 北京: 高等教育出版社, 1991.
[21]  李永强, 李 锋, 何永亮. 四边固支铝基蜂窝夹层板弯曲自由振动分析 [J]. 复合材料学报, 2011, 28(3): 210-216. Li Yongqiang, Li Feng, He Yongliang. Flexural vibration analysis of honeycomb sandwich plate with completely clamped support [J]. Acta Materiae Compositae Sinica, 2011, 28(3): 210-216.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133