全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳纳米管/聚乙烯复合物分子动力学模拟研究

, PP. 286-294

Keywords: 分子动力学模拟,聚合物纳米复合物,聚乙烯,碳纳米管,热压力系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用分子动力学方法模拟了碳纳米管/聚乙烯复合物的结构、热力学和力学特性,分析其随模拟温度和碳纳米管填充率的变化。模拟结果表明,碳纳米管/聚乙烯复合物为各向同性的无定形结构,聚乙烯和碳纳米管通过较强的范德华作用结合在一起,在聚乙烯基体作用下,碳纳米管壁上的碳原子排列的周期性下降,出现弯曲和褶皱。从能量上看,填充率较高的复合物更加稳定。碳纳米管/聚乙烯复合物具有比聚乙烯体系更高的等容热容和与聚乙烯体系相反的负值热压力系数,热容随碳纳米管填充率的变化较小,但随温度的升高而明显减小,具有显著的温度效应;热压力系数随温度的变化较小,温度稳定性比聚乙烯更好,但随填充率增加而减小。碳纳米管/聚乙烯复合物的力学特性表现出各向同性材料的弹性常数张量,弹性模量和泊松比比纯聚乙烯体系高得多,并且都随温度的升高和碳纳米管含量的降低而减小,说明加入碳纳米管可显著改善聚乙烯的力学性质。

References

[1]  Smith G, Bedrov D, Li L, et al. A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites[J]. Journal of Chemical Physics, 2002, 117(20): 9478-9489.
[2]  Adnan A, Sun C T, Mahfuz H. A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites[J]. Composites Science and Technology, 2007, 67(3-4): 348-356.
[3]  Zeng Q H, Yu A B, Lu G Q. Multiscale modeling and simulation of polymer nanocomposites[J]. Progress in Polymer Science, 2008, 33(2): 191-269.
[4]  张忠强, 程广贵, 刘 珍, 等. 碳纳米管-聚乙烯复合材料界面力学特性分析[J]. 物理学报, 2012, 61(12): 126202. Zhang Zhongqiang, Cheng Guanggui, Liu Zhen, et al. Analysis of interfacial mechanical properties of carbon nanotube-polymer composite[J]. Acta Physica Sinica, 2012, 61(12): 126202.
[5]  http://accelrys.com/products/materials-studio/polymers-and-classical-simulation-software.html.
[6]  Rigby D, Roe R J. Molecular dynamics simulation of polymer liquid and glass. I. Glass transition[J]. Journal of Chemical Physics, 1987, 87: 7285-7292.
[7]  Rigby D, Roe R J. Molecular dynamics simulation of polymer liquid and Glass. Ⅱ. short range order and orientation correlation[J]. Journal of Chemical Physics, 1988, 89: 5280-5290.
[8]  Lee K Y, Kim K Y, Han W Y, et al. Thermal, electrical characteristics and morphology of poly(ethylene-co-ethylacrylate)/CNT nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 205-213.
[9]  王建立, 熊国平, 顾 明, 等. 多壁碳纳米管/聚丙烯复合材料热导率研究[J]. 物理学报, 2009, 58(7): 4536-4541. Wang Jianli, Xiong Guoping, Gu Ming, et al. A study on the thermal conductivity of multiwalled carbon nanotube/polypropylene composite[J]. Acta Physica Sinica, 2009, 58(7): 4536-4541.
[10]  Haggenmueller R, Gommans H H, Rinzler A G, et al. Aligned single-wall carbon nanotubes in composites by melt processing methods[J]. Chemical Physics Letters, 2000, 330(3): 219-225.
[11]  Thostenson E T, Ren Z, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: a review[J]. Composites Science and Technology, 2001, 61(13): 1899-1912.
[12]  Nakashima N, Tomonari Y, Murakami H. Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion[J]. Chemical Physics Letters, 2002, 31(6): 638-639.
[13]  Islam M F, Rojas E, Bergey D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Letters, 2003, 3(2): 269-273.
[14]  Lordi V, Yao N. Molecular mechanics of binding in carbon nanotube-polymer composites[J]. Journal of Materials Research, 2000, 15(12): 2770-2779.
[15]  Liao K, Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system[J]. Applied Physics Letters, 2001, 79(25): 4225-4227.
[16]  Starr F W, Schroder T B, Glotzer S C. Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films[J]. Physical Reviews E, 2001, 64(2): 021802-1-021802-5.
[17]  Wilson E B, Decius J C, Cross P C. Molecular vibrations[M]. New York: Dover, 1980: 256-258.
[18]  Nosé S. Constant temperature molecular dynamics methods[J]. Progress of Theoretical Physics Supplement, 1991, 103: 1-46.
[19]  Ma P C, Siddiqui N A, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1345-1367.
[20]  Morishita T, Matsushita M, Katagiri Y, et al. A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation[J]. Journal of Materials Chemistry, 2011, 21: 5610-5614.
[21]  陆明万.工程弹性力学与有限元法[M].北京: 清华大学出版社, 2005: 146-173. Lu Mingwan. Engineering elasticity and finite element method[M]. Beijing: Tsinghua University Press, 2005: 146-173.
[22]  Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials, 2006, 18(6): 689-706.
[23]  Yang B X, Pramoda K P, Xu G Q, et al. Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes[J]. Advanced Functional Materials, 2007, 17(13): 2062-2069.
[24]  Stowe J Q, Predecki P K, Laz P J, et al. Probabilistic molecular dynamics evaluation of the stress-strain behavior of polyethylene[J]. Acta Materialia, 2009, 57(12): 3615-3622.
[25]  McNally T, Ptschke P, Halley P, et al. Polyethylene multiwalled carbon nanotube composites[J]. Polymer, 2005, 46(19): 8222-8232.
[26]  Li X D, Gao H S, Scrivens W A, et al. Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites[J]. Nanotechnology, 2004, 15(11): 1416-1423.
[27]  Coleman J N, Cadek M, Blake R, et al. High performance nanotube-reinforced plastics: understanding the mechanism of strength increase[J]. Advanced Functional Materials, 2004, 14(8): 791-798.
[28]  Hwang G L, Shieh Y T, Hwang K C. Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites[J]. Advanced Functional Materials, 2004, 14(5): 487-491.
[29]  Gómez-del Río T, Poza P, Rodríguez J, et al. Influence of single-walled carbon nanotubes on the effective elastic constants of poly (ethylene terephthalate)[J]. Composites Science and Technology, 2010, 70(2): 284-290.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133