全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

天然纤维素/聚丙烯腈抗菌纳米纤维的制备与表征
Preparation and characterization of natural cellulose/polyacrylonitrile antibacterial nanofibers

DOI: 10.13801/j.cnki.fhclxb.20141204.003

Keywords: 纤维素,聚丙烯腈,静电纺丝,纳米纤维,铜离子抗菌处理
cellulose
,polyacrylonitrile,electrospinning,nanofibers,copper ions antibacterial treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了拓展天然纤维素材料的应用, 在综合国内外对天然纤维素材料、纳米材料和抗菌材料相关研究的基础上, 首先, 利用LiCl/二甲基乙酰胺(DMAC)溶剂体系配置了不同共混比例的天然纤维素/聚丙烯腈纺丝液, 采用静电纺丝技术制备了纤维素/聚丙烯腈纳米纤维。然后, 用铜氨溶液对纳米纤维进行了抗菌处理, 制备了具有一定抗菌功能的纤维集合体。最后, 采用SEM观察不同共混比例下纳米纤维的微观形貌;采用TG和DSC表征其热性能;采用FTIR和表面接触角测量仪表征共混后纳米纤维的化学组成和亲水性的变化;采用振荡法测定纳米纤维的抗菌性能。结果表明:通过静电纺丝技术可制得直径在200~400 nm范围内的纤维素/聚丙烯腈纳米纤维。随着纤维素含量的提高, 纳米纤维的表面越来越粗糙, 粘连愈加严重, 且直径离散度也变大。当纤维素与聚丙烯腈的共混质量比大于75:25时, 纤维的直径标准偏差由纯聚丙烯腈纤维的100 nm以下变为150 nm以上。纤维素/聚丙烯腈纳米纤维具有良好的热性能, 与纯纤维素纳米纤维相比热稳定性有一定提高, 当纤维素与聚丙烯腈的共混质量比为25:75时热稳定性最好。纤维素/聚丙烯腈纳米纤维的亲水性优于普通医用纱布的。经过铜氨溶液抗菌处理的纳米纤维具有良好的抗菌性能, 对金黄色葡萄球菌和大肠杆菌的抑菌率分别为82%和75%。 In order to develop the application of natural cellulose material, based on the domestic and international relative research of natural cellulose materials, nanomaterials and antibacterial materials, LiCl/N, N-dimethylacetamide (DMAC) solvent system was used to prepare the natural cellulose/polyacrylonitrile spinning solutions with different blending proportions, and cellulose/polyacrylonitrile nanofibers were prepared by electrospinning technique firstly. Then, copper ammonia solution was used to prepare the fibrous assemblies with anti-bacterial function at a certain extend through antibacterial treatment of nanofibers. Finally, the morphology of nanofibers with different blending ratios was characterized by SEM; the thermal properties were characterized by TG and DSC; the changes of chemical compositions and hydrophilicity of nanofibers after blending were determined by FTIR and optical contact angle measuring instrument; antibacterial properties of the nanofibers were detected by oscillation technique. The results indicate that the cellulose/polyacrylonitrile nanofibers with diameter ranges from 200-400 nm can be prepared by electrospinning technology. With the increasing of cellulose content, the surfaces of nanofibers tend to be more rough, the adhesion becomes serious, and the discrete degree of diameter also increases. When the blending mass ratio of cellulose to polyacrylonitrile exceeds 75:25, the standard deviation of diameter increases from less than 100 nm of pure polyacrylonitrile fiber to more than 150 nm. The cellulose/polyacrylonitrile nanofibers have good thermal performance, the thermostability has a certain improvement comparing with pure cellulose nanofibers. When the blending mass ratio of cellulose to polyacrylonitrile is 25:75, the thermostability achieves the best. The hydrophily of cellulose/polyacrylonitrile nanofibers is better than that of ordinary medical gauze. The nanofibers after antibacterial treatment using copper ammonia solution have good antibacterial

References

[1]  Rosenau T, Potthast A, Hofinger A, et al. Hydrolytic processes and condensation reactions in the cellulose solvent system N, N-dimethylacetamide/lithium chloride. Part 1[J]. Holzforschung, 2001, 55(6): 661-666.
[2]  Potthast A, Rosenau T, Sartori J, et al. Hydrolytic processes and condensation reactions in the cellulose solvent system dimethylacetamide/lithium chloride. Part 2: Degradation of cellulose[J]. Polymer, 2003, 44(1): 7-17.
[3]  Potthast A, Rosenau T, Buchner R, et al. The cellulose solvent system N, N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability[J]. Cellulose, 2002, 9(1): 41-53.
[4]  Qin Z Y, Chen Y Y, Zhang P, et al. Structure and properties of Cu(II) complex bamboo pulp fabrics[J]. Journal of Applied Polymer Science, 2010, 117(3): 1843-1850.
[5]  Zhang X Y, Zhu P, Zhang L, et al. Rheological properties and solubility of cellulose cuprammonium complex solution[J]. China Synthetic Fiber Industry, 2012, 35(3): 28-30 (in Chinese). 张须友, 朱平, 张林, 等. 纤维素铜氨溶液的溶解性能及流变性能[J]. 合成纤维工业, 2012, 35(3): 28-30.
[6]  Demir M M, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers[J]. Polymer, 2002, 43(11): 3303-3309.
[7]  Ding B, Yu J Y. Electrospinning and nanofiber[M]. Beijing: China Textile & Apparel Press, 2011: 10-35 (in Chinese). 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011: 10-35.
[8]  Turner M B, Spear S K, Holbrey J D, et al. Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization[J]. Biomacromolecules, 2005, 6(5): 2497-2502.
[9]  Fong H, Chun I, Reneker D H. Beaded nanofibers formed during eletrospinning[J]. Polymer, 1999, 40(6): 4585-4592.
[10]  Kim C W, Kim D S, Kang S Y, et al. Structural studies of electrospun cellulose nanofibers[J]. Polymer, 2006, 47(14): 5097-5107.
[11]  Manisara P, Thawatchai P. Gallic acid-loaded cellulose acetate electrospun nanofibers: Thermal properties, mechanical properties and drug release behavior[J]. Open Journal of Polymer Chemistry, 2012, 2(1): 21-29.
[12]  Liu B B. Dissolution and electrostatic spinning process of bacterial cellulose[D]. Nanjing: Nanjing University of Science and Technology, 2012 (in Chinese). 刘备备. 细菌纤维素的溶解与静电纺丝工艺研究[D]. 南京: 南京理工大学, 2012.
[13]  Gu S Y, Ren J, Wu Q L. Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers[J]. Synthetic Metals, 2005, 155(1): 157-161.
[14]  He C J, Pang F, Wang Q. Properties of cellulose/PAN blend membrane[J]. Journal of Applied Polymer Science, 2002, 83(14): 3105-3111.
[15]  Wei J L. High flux composite ultra/nanofiltration membrane based on polyacrylonitrile nanofibrous substrates and cellulose acetate hydrophilic coatings[D]. Shanghai: Donghua University, 2010 (in Chinese). 魏洁林. 基于聚丙烯腈(PAN)静电纺纳米纤维的醋酸纤维素(CA)复合超滤/纳滤膜的结构与性能研究[D]. 上海: 东华大学, 2010.
[16]  Xu G M. Thin film filtration composite member and based on nanofiberous scaffolds and cellulose triacetate (CAT) coatings[D]. Shanghai: Donghua University, 2012 (in Chinese). 徐广明. 纳米纤维基三醋酸纤维素(CTA)复合滤膜的研究[D]. 上海: 东华大学, 2012.
[17]  Dawsey T R, McCormick C L. The lithium chloride/dimethylacetamide solvent for cellulose: a literature review[J]. Journal of Macromolecular Science Reviews in Macromolecular Chemistry and Physics, 1990, 30(3-4): 405-440.
[18]  Zhang X Y. Dissolving and regeneration of cellulose in copper ammonia solution and copper ethylenediamine solution[D]. Qingdao: Qingdao University, 2012 (in Chinese). 张须友. 纤维素在铜氨溶液和铜乙二胺溶液中的溶解及再生[D]. 青岛: 青岛大学, 2012.
[19]  Katti D S, Robinson K W, Frank K K, et al. Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 70(2): 286-296.
[20]  Wang C, Lu X F. High voltage electrospinning and nanofibers[M]. Beijing: Science Press, 2011: 96-99 (in Chinese). 王策, 卢晓峰. 高压静电纺丝技术与纳米纤维[M]. 北京: 科学出版社, 2011: 96-99.
[21]  Lin S. Preparation of antibacterial cellulose membranes and their application in the depth treatment of water[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013 (in Chinese). 林珊. 纤维素抗菌膜的制备及其深度水处理研究[D]. 福州: 福建农林大学, 2013.
[22]  Halidan M. Preparation and stability of cellulose LiCl/DMAc solution[J]. Journal of Textile Research, 2010, 31(8): 6-11 (in Chinese). 哈丽丹·买买提. 纤维素LiCl/DMAc溶液的制备及其稳定性[J]. 纺织学报, 2010, 31(8): 6-11.
[23]  Qin X H, Wang S Y, He J H, et al. Effect of LiCl on electrospinning of PAN polymer solution: Theoretical analysis and experimental verification[J]. Polymer, 2004, 45(18): 6409-6413.
[24]  Zhang R M. Research and preparation on polyacrylonitrile/cellulose/ionic liquid blend spinning solution[D]. Tianjin: Tianjin Polytechnic University, 2011 (in Chinese). 张瑞民. 聚丙烯腈/纤维素/离子液体共混纺丝溶液制备与纤维结构和性能的研究[D]. 天津: 天津工业大学, 2011.
[25]  General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 20944.3—2008 Textiles—Evaluation for antibacterial activity—Part 3: Shake flask method[S]. Beijing: Standards Press of China, 2008 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. GB/T 20944.3—2008 纺织品抗菌性能的评价 第3部分 振荡法[S]. 北京: 中国标准出版社, 2008.
[26]  Chen W X, Shen Z Q, Liu G F, et al. Coordination structure and antibacterial activity of copper (II) complex fibers[J]. Acta Polymerica Sinica, 1998(4): 431-437 (in Chinese). 陈文兴, 沈之荃, 刘冠峰, 等. 铜(II)络合纤维的配位结构与抗菌性[J]. 高分子学报, 1998(4): 431-437.
[27]  Faruk G, Ibrahim U, Arda A. Preparation and characterization of PVA/PVP nanofibers as promising materials for wound dressing[J]. Polymer Plastics Technology and Engineering, 2013, 52(12): 1259-1265.
[28]  Zhou M. Preparation and characterization of PAN/CA composite nanofibers[D]. Wuxi: Jiangnan University, 2011 (in Chinese). 周明. PAN/CA复合纳米纤维的制备及性能表征[D]. 无锡: 江南大学, 2011.
[29]  Dai H L. Preparation and properties of absorbent medical cotton cloth[D]. Shanghai: Donghua University, 2014 (in Chinese). 戴海玲. 高吸水性医用棉纱布的制备及性能研究[D]. 上海: 东华大学, 2014.
[30]  Xu X L. Study on the preparation and environmental impact of new wound dressing gelatin-based antibacterial nanofiber hydrogels[D]. Shanghai: Donghua University, 2009 (in Chinese). 徐雄立. 新型医用敷料——明胶基抗菌纳米纤维水凝胶的制备及其环境影响研究[D]. 上海: 东华大学, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133