全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

Ag和介孔碳改性Bi2WO6光催化剂的合成及其可见光下的光催化性能
Synthesis of Ag and mesoporous carbon modified Bi2WO6 photocatalyst and its photocatalytic property in visible light

DOI: 10.13801/j.cnki.fhclxb.20140918.001

Keywords: 介孔碳,Ag,Bi2WO6,负载,可见光催化
mesoporous carbon
,Ag,Bi2WO6,loading,visible light photocatalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用水热法合成了花球状的Bi2WO6和介孔碳CMK-3/Bi2WO6的光催化剂, 然后通过光还原得到了Ag负载的Ag/Bi2WO6和Ag-CMK-3/Bi2WO6, 制备出可见光下具有高活性的光催化剂。利用紫外-可见漫反射光谱(UV-Vis DRS)、X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)和扫描电子显微镜(SEM)对制备的样品进行表征, 评价样品在可见光照射下降解亚甲基蓝(MB)的光催化活性。并研究了CMK-3和Ag负载在Bi2WO6上都能提高其光催化活性的机制。结果表明: CMK-3或Ag负载在Bi2WO6上都能大幅提高Bi2WO6的光催化活性, Ag-CMK-3/Bi2WO6光催化剂的光催化性能优于Ag/Bi2WO6和CMK-3/Bi2WO6光催化剂。 Flower sphere-like Bi2WO6 and mesoporous carbon CMK-3/Bi2WO6 photocatalysts were synthesized by hydrothermal method, and then Ag/Bi2WO6 and Ag/CMK-3/Bi2WO6 were prepared via a photoreduction process in order to obtain the photocatalysts with high visible light activities. The as-prepared samples were characterized by ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD), transmission electron microscope(TEM), high resolution transmission electron microscope (HR-TEM) and scanning electron microscope (SEM). The photocatalytic activities of the samples were evaluated by the photodegradation of methylene blue (MB) under visible light irradiation. The mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag-loaded Bi2WO6 was also investigated. The results show that CMK-3 or Ag loading greatly improves the photocatalytic activity of Bi2WO6, the photocatalytic activity of Ag/CMK-3/Bi2WO6 photocatalyst is superior to the activities of CMK-3/Bi2WO6 and Ag/Bi2WO6 photocatalysts. 江苏大学高级人才基金(10JDG114)

References

[1]  Shang M, Wang W Z, Sun S M, et al. Bi2WO6 Nanocrystals with high photocatalytic activities under visible light [J]. Journal of Physical Chemistry C, 2008, 112 (28): 10407-10411.
[2]  Alfaro S O, de la Cruz A M L. Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2W2O9 obtained by co-precipitation method [J]. Applied Catalysis A: General, 2010, 383(1-2): 128-133.
[3]  Yu J G, Ma T T, Liu S W. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel[J]. Physical Chemistry Chemical Physics, 2011, 13(8): 3491-3501.
[4]  Zhang Z J, Wang W Z, Shang M, et al. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst [J]. Journal of Hazardous Materials, 2010, 177(1): 1013-1018.
[5]  Wang D J, Xue G L, Zhen Y Z, et al. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities [J]. Journal of Materials Chemistry, 2012, 22(11): 4751-4758.
[6]  Li Y Y, Liu J P, Huang X T, et al. Carbon-modified Bi2WO6 nanostructures with improved photocatalytic activity under visible light[J]. Dalton Transactions, 2010, 39(14): 3420-3425.
[7]  Yu J G, Xiong J G, Cheng B, et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders[J]. Journal of Solid State Chemistry, 2005, 178(6): 1968-1972.
[8]  Lu W W, Gao S Y, Wang J J. One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance[J]. Journal of Physical Chemistry C, 2008, 112(43): 16792-16800.
[9]  Zhang L S, Wang W Z, Chen Z G, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts [J]. Journal of Materials Chemistry, 2007, 17(24): 2526-2532.
[10]  Ren J, Wang W Z, Sun S M, et al. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation [J]. Applied Catalysis B: Environment, 2009, 92(1-2): 50-55.
[11]  Zhang Z J, Wang W Z, Gao E, et al. Photocatalysis coupled with thermal effect induced by SPR on Ag-loaded Bi2WO6 with enhanced photocatalytic activity [J].Journal of Physical Chemistry C, 2012, 116(49): 25898-25903.
[12]  Zhang J, Huang Z H, Xu Y, et al. Hydrothermal synthesis of graphene/Bi2WO6 composite with high adsorptivity and photoactivity for azo dyes[J]. Journal of the American Ceramic Society, 2013, 96(5): 1562-1569.
[13]  Chen S H, Yin Z, Luo S L, et al. Photoreactive mesoporous carbon/Bi2WO6 composites: Synthesis and reactivity [J]. Applied Surface Science, 2012, 259: 7-12.
[14]  Low J X, Yu J G, Li Q, et al. Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6 nanosheets[J]. Physical Chemistry Chemical Physics, 2014, 16(3): 1111-1120.
[15]  Ong W L, Gao M, Ho G W, Hybrid organic PVDF-inorganic M-rGO-TiO2 (M=Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production [J]. Nanoscale, 2013, 5(22): 11283-11290.
[16]  Pant H R, Pant B, Kim H J, et al. A green and facile one-pot synthesis of Ag-ZnO/RGO nanocomposite with effective photocatalytic activity for removal of organic pollutants[J]. Ceramics International, 2013, 39(5): 5083-5091.
[17]  Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. Journal of the American Chemical Society, 1998, 120(24): 6024-6036.
[18]  Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. Journal of the American Chemical Society, 2000, 122(43): 10712-10713.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133