|
- 2015
明胶/海藻酸钠(京尼平交联)互穿网络膜的制备与性能
|
Abstract:
为了提高海藻酸钠与明胶各自的性能, 首先, 以海藻酸钠和明胶为原料, 以京尼平、CaCl2为交联剂, 采用分步交联法制备了明胶/海藻酸钠互穿网络膜。然后, 利用FTIR对明胶/海藻酸钠互穿网络结构进行了表征与分析, 根据FTIR结果推测了互穿网络结构形成的机制。最后, 探讨了京尼平的加入量和明胶与京尼平的质量比对互穿网络膜力学性能和交联度的影响, 及海藻酸钠与明胶的质量比对互穿网络膜力学性能、断面形貌、热稳定性和吸水保水性能的影响。结果表明:当明胶与京尼平的质量比为200:1、海藻酸钠与明胶的质量比为2:1时, 互穿网络膜具有最佳的力学性能、吸水保水性能和相容性;此外, 互穿网络膜的力学性能也优于纯海藻酸钠膜与纯明胶膜的。明胶的加入提高了互穿网络膜在低温区的热稳定性, 但降低了高温区的热稳定性。海藻酸钠与明胶之间可能以分子间作用力、氢键及离子键等相互作用, 提高了二者各自的初始分解温度与最大热分解温度。研究解决了海藻酸钠与明胶力学性能差的问题, 为拓展海藻酸钠在医用领域的应用提供参考。 In order to improve the properties of sodium alginate and gelatin respectively, sodium alginate and gelatin were used as raw materials, genipin and CaCl2 were used as the cross-linkers, and the gelatin/sodium alginate interpenetrating polymeric network films were prepared by step-by-step crosslinking method firstly. Then, the gelatin/sodium alginate interpenetrating polymeric network formation was characterized and analyzed by FTIR, and the formation mechanisms of interpenetrating polymeric network were speculated by FTIR results. Finally, the effects of the additive amount of genipin and the mass ratio of gelatin to genipin on the mechanical properties and crosslinking degree of interpenetrating polymeric network films, and the mass ratio of sodium alginate to gelatin on the mechanical properties, fracture morphologies, thermal stabilities, water absorption and retaining properties of interpenetrating polymeric network films were discussed. The results show that when the mass ratio of gelatin to genipin is 200:1 and the mass ratio of sodium alginate to gelatin is 2:1, the mechanical properties, water absorption and retaining properties and compatibility of interpenetrating polymeric network films reach the best. In addition, the mechanical properties of interpenetrating polymeric network films are also superior to that of pure sodium alginate film and pure gelatin film. The addition of gelatin improves the thermal stabilities of interpenetrating polymeric network films at lower temperature zone, while decreases the thermal stabilities at higher temperature zone. Sodium alginate and gelatin interact each other by intermolecular forces, hydrogen bonding, ionic bond and so on, which improves the initial decomposition temperatures and the maximum-rate thermal decomposition temperatures of the two components. The research solves the problem of the poor mechanical properties of sodium alginate and gelatin, and provides a reference for the application of sodium alginate used in medical fields. 国家自然科学基金(51073122,51203126);湖北省自然科学基金重点项目(2009CDA033)
[1] | Lee K Y, Mooney D J. Alginate: Properties and biomedical applications[J]. Progress in Polymer Science, 2012, 37(1): 106-126. |
[2] | Lin N, Huang J, Chang P R, et al. Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres[J]. Colloids and Surfaces B: Biointerfaces, 2011, 85(2): 270-279. |
[3] | Chen H B, Wang Y Z, Sánchezsoto M, et al. Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay[J]. Polymer, 2012, 53(25): 5825-5831. |
[4] | Zheng H, Tan Z A, Jian X. Preparation of chitosan/gelatin composite fibers and their biodegradability[J]. Key Engineering Materials, 2003, 249: 437-440. |
[5] | Shuai X H, Wang S Q, Song Z F, et al. Applications and developing process of gelation[J]. Leather Chemicals, 2007, 24(3): 20-23 (in Chinese). 帅兴华, 王少强, 宋增峰, 等. 明胶应用性能的研究[J]. 皮革化工, 2007, 24(3): 20-23. |
[6] | Zheng J P, Xi L F, Yang X W, et al. Mechanical properties of gelatin and gelatin/montmorillonite nanocomposite crosslinked via different methons[J]. Journal of Materials Engineering, 2003(9): 26-29 (in Chinese). 郑俊萍, 奚利飞, 杨学稳, 等. 不同交联方式的明胶及明胶/蒙脱土纳米复合材料的力学性能[J]. 材料工程, 2003(9): 26-29. |
[7] | Ji H, Liu Y, Zhao J C, et al. The preparation and thermal properties of calcium alginate/gelatin (semi) IPNs crosslinked with oxidized sodium alginate[J]. Journal of Functional Materials, 2014, 45(4): 4130-4133 (in Chinese). 冀虎, 刘云, 赵瑾朝, 等. 氧化海藻酸钠交联海藻酸钙/明胶(半)互穿网络的制备及热稳定性研究[J]. 功能材料, 2014, 45(4): 4130-4133. |
[8] | Zou Y, Huang Y Q, Xia Y Z. The development of wound dressing made with gelatin and natural polymers[J]. Journal of Functional Materials, 2004, 35(21): 2310-2313 (in Chinese). 邹勇, 黄雅钦, 夏宇正. 明胶与天然聚合物复合制备创伤敷料的研究进展[J]. 功能材料, 2004, 35(21): 2310-2313. |
[9] | Bigi A, Cojazzi G, Panzavolta S, et al. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking[J].Biomaterials, 2001, 22(8): 763-768. |
[10] | Sung H W, Liang I L, Chen C N, et al. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin)[J]. Journal of Biomedical Materials Research, 2001, 55(4): 538-546. |
[11] | Sisson K, Zhang C, Farach-Carson M C, et al. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability[J]. Biomacromolecules, 2009, 10(7): 1675-1680. |
[12] | Dong X, Tian H Y, Chen J, et al. Synthesis and characterization of genipin cross-linker oligoethylenimine for gene delivery[J]. Acta Polymerica Sinica, 2011(9): 1086-1091 (in Chinese). 董璇, 田华雨, 陈杰, 等. 京尼平交联低聚乙烯亚胺智能基因载体的制备与表征[J]. 高分子学报, 2011(9): 1086-1091. |
[13] | Bigi A, Cojazzi G, Panzavolta S, et al. Stabilization of gelatin films by crosslinking with genipin[J]. Biomaterials, 2002, 23(24): 4827-4832. |
[14] | Liang H C, Chang W H, Lin K J, et al. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies[J]. Journal of Biomedical Materials Part A, 2003, 65(2): 271-282. |
[15] | General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 4456—2008 Polyethylene blown film for packaging applications[S]. Beijing: Standards Press of China, 2008 (in Chinese). 中华人民共和国国家质量监督检疫总局. GB/T 4456—2008 包装用聚乙烯吹塑薄膜[S]. 北京: 中国标准出版社, 2008. |
[16] | Cao M Y, Chen Z J, Tu K H, et al. Studies on one-step electrospinning for preparing crosslinked gelatin fibers[J]. Acta Polymerica Sinica, 2009(11): 1157-1160 (in Chinese). 曹墨源, 陈正坚, 涂克华, 等. 原位交联明胶电纺纤维的制备工艺研究[J]. 高分子学报, 2009(11): 1157-1160. |
[17] | Chan L W, Jin Y, Heng W S. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres[J]. International Journal of Pharmaceutics, 2002, 242(1): 255-258. |
[18] | Nokhodchi A, Tailor A. In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices[J]. II Farmaco, 2004, 59(12): 999-1004. |
[19] | Farris S, Song J H, Huang Q R. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde[J]. Journal of Agricultural and Food Chemistry, 2010, 58(2): 998-1003. |
[20] | Cui L, Jia J F, Guo Y, et al. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin[J]. Carbohydrate Polymers, 2014, 99: 31-38. |
[21] | Cao N, Fu Y H, He J H. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid[J]. Food Hydrocolloids, 2007, 21(4): 575-584. |
[22] | Choi Y S, Hong S R, Lee Y M, et al. Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge[J]. Journal of Biomedical Materials Research, 1999, 48(5): 631-639. |
[23] | Tsai C C, Huang R N, Sung H W, et al. In vitro evaluation of the genotoxicity of a naturally occurring crosslinking agent (genipin) for biologic tissue fixation[J]. Journal of Biomedical Materials Research, 2000, 52(1): 58-65. |