|
- 2015
复合材料层合板基体裂纹的协同损伤演化模型
|
Abstract:
首先, 为研究复合材料层合板在准静态载荷下的基体裂纹演化特征, 提出了一个基于能量的协同损伤演化模型。然后, 通过模型对损伤进行了多尺度分析:从微观角度, 采用三维有限元方法求得裂纹表面位移;从宏观角度, 结合裂纹表面位移, 推导了萌生基体裂纹的能量释放率。最后, 根据裂纹萌生准则对基体裂纹的演化过程进行预测。模型考虑了演化过程中损伤的相互影响、残余应力、基体材料非线性、材料初始损伤分布及损伤演化的不均匀性。根据演化分析流程计算了[±θ/904]s铺层玻璃纤维复合材料的基体裂纹演化过程。 结果表明:这一模型能够准确地预测准静态载荷下复合材料层合板基体裂纹的损伤演化规律。 First, in order to investigate the evolution characteristics of matrix cracks in composite laminates under quasi-static loading, a synergistic damage evolving model based on energy was proposed. Then, the damage was analyzed in multi-scale through the model: in micro-level, crack surface displacements were calculated by three-dimensional finite element method; in macro-level, the energy released rates of matrix crack initiation were obtained with the crack surface displacements. Finally, the evolving process of matrix cracks was predicted by the crack initiation criterion. The model had taken the damage interaction, residual stress, nonlinearity of matrix, material initial damage distribution and inhomogeneity of damage evolving in evolutionary process into consideration. According to the evolutionary analysis process, matrix crack evolution process in glass fiber composites with the configuration of [±θ/904]s was analyzed. The results show that the model is capable to predict the damage evolution laws of matrix cracks of composite laminates under quasi-static loading. 国家自然科学基金(11202098);教育部长江学者创新团队项目(IRT0968);江苏高校优势学科建设工程
[1] | Joffe R, Varna J. Damage evolution modeling in multidirectional laminates and the resulting nonlinear response[C]//International Committee on Composite Materials Proceed-ings, 1999. |
[2] | Joffe R, Krasnikovs A, Varna J. COD-based simulation of transverse cracking and stiffness reduction in [S/90n]s laminates[J]. Composites Science and Technology, 2001, 61(5): 637-656. |
[3] | Allen D H, Yoon C. Homogenization techniques for thermo viscoelastic solids containing cracks[J]. International Journal of Solids and Structures, 1998, 35(31): 4035-4053. |
[4] | Singh C V, Talreja R. Evolution of ply cracks in multidirectional composite laminates[J]. International Journal of Solids and Structures, 2010, 47(10): 1338-1349. |
[5] | Nairn J A, Hu S, Bark J S. A critical evaluation of theories for predicting microcracking in composite laminates[J]. Journal of Materials Science, 1993, 28(18): 5099-5111. |
[6] | Garrett K W, Bailey J E. Multiple transverse fracture in 90 cross-ply laminates of a glass fibre-reinforced polyester[J]. Journal of Materials Science, 1977, 12(1): 157-168. |
[7] | Peters P. The strength distribution of 90 plies in 0/90/0 graphite-epoxy laminates[J]. Journal of Composite Materials, 1984, 18(6): 545-556. |
[8] | Takeda N, Ogihara S. In situ observation and probabilistic prediction of microscopic failure processes in CFRP cross-ply laminates[J]. Composites Science and Technology, 1994, 52(2): 183-195. |
[9] | Berthelot J. Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: Static and fatigue loading[J]. Applied Mechanics Reviews, 2003, 56(1): 111-147. |
[10] | Laws N, Dvorak G J. Progressive transverse cracking in composite laminates[J]. Journal of Composite Materials, 1988, 22(10): 900-916. |
[11] | Nairn J A. The strain energy release rate of composite microcracking: A variational approach[J]. Journal of Composite Materials, 1989, 23(11): 1106-1129. |
[12] | Qu J, Hoiseth K. Evolution of transverse matrix cracking in cross-ply laminates[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(4): 451-464. |
[13] | Adolfsson E, Gudmundson P. Matrix crack initiation and progression in composite laminates subjected to bending and extension[J]. International Journal of Solids and Structures, 1999, 36(21): 3131-3169. |
[14] | Mccartney L N. Energy-based prediction of failure in general symmetric laminates[J]. Engineering Fracture Mechanics, 2005, 72(6): 909-930. |
[15] | Hashin Z. Finite thermoelastic fracture criterion with application to laminate cracking analysis[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(7): 1129-1145. |
[16] | Varna J, Joffe R, Talreja R. A synergistic damage-mechanics analysis of transverse cracking in [±θ/904]s laminates[J]. Composites Science and Technology, 2001, 61(5): 657-665. |
[17] | Varna J, Joffe R, Talreja R. Mixed micromechanics and continuum damage mechanics approach to transverse cracking in [S, 90n]s laminates[J]. Mechanics of Composite Materials, 2001, 37(2): 115-126. |
[18] | Shen H J, Yao W X, Wu F Q. Synergistic damage mechanic model for stiffness properties of composite laminates[J]. Acta Mechanica Sinica, 2014, 46(2): 255-263 (in Chinese). 沈浩杰, 姚卫星, 吴富强. 复合材料刚度性能表征的协同损伤力学模型[J]. 力学学报, 2014, 46(2): 255-263. |
[19] | Kachanov M. Continuum model of medium with cracks[J]. Journal of the Engineering Mechanics Division, 1980, 106(5): 1039-1051. |
[20] | Hahn H T. Nonlinear behavior of laminated composites[J]. Journal of Composite Materials, 1973, 7(2): 257-271. |
[21] | Liu S, Nairn J A. The formation and propagation of matrix microcracks in cross-ply laminates during static loading[J]. Journal of Reinforced Plastics and Composites, 1992, 11(2): 158-178. |
[22] | Varna J, Joffe R, Akshantala N V, et al. Damage in composite laminates with off-axis plies[J]. Composites Science and Technology, 1999, 59(14): 2139-2147. |
[23] | Rotem A, Hashin Z. Failure modes of angle ply laminates[J]. Journal of Composite Materials, 1975, 9(2): 191-206. |
[24] | Talreja R. Fatigue of composite materials[M]. Lancaster: Technomic, 1987: 73-81. |
[25] | Manders P W, Chou T, Jones F R, et al. Statistical analysis of multiple fracture in 0/90/0 glass fibre/epoxy resin laminates[J]. Journal of Materials Science, 1983, 18(10): 2876-2889. |
[26] | Fukunaga H, Chou T, Peters P, et al. Probabilistic failure strength analyses of graphite/epoxy cross-ply laminates[J]. Journal of Composite Materials, 1984, 18(4): 339-356. |