全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黑河流域生态—水文过程综合遥感观测联合试验总体设计

DOI: 10.11867/j.issn.1001-8166.2012.05.0481, PP. 481-498

Keywords: 生态水文,遥感试验,流域观测系统,黑河流域,航空遥感,水文气象,无线传感器网络,真实性检验

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了“黑河流域生态—水文过程综合遥感观测联合试验”的背景、科学目标、试验组成和试验方案。试验的总体目标是显著提升对流域生态和水文过程的观测能力,建立国际领先的流域观测系统,提高遥感在流域生态—水文集成研究和水资源管理中的应用能力。由基础试验、专题试验、应用试验、产品与方法研究和信息系统组成。其中,①基础试验搭载微波辐射计、成像光谱仪、热像仪、激光雷达等航空遥感设备,开展一系列关键生态和水文参量的观测;发展遥感正向模型及反演和估算方法。形成覆盖全流域的水文气象综合观测网,为流域生态—水文模型研究提供更有代表性的模型参数、驱动数据及更高精度的验证数据。构建无线传感器网络,度量生态水文模型所需的若干关键的驱动、参数和模型状态的空间异质性。开展航空遥感定标和地基遥感试验。依托传感器网络,并辅之以地面同步和加密观测,开展遥感产品真实性检验。②专题试验开展“非均匀下垫面多尺度地表蒸散发观测试验”,采用密集的涡动相关仪、大孔径闪烁仪与自动气象站的观测矩阵,为揭示地表蒸散发的空间异质性,实现非均匀下垫面地表蒸散发的尺度扩展,发展和验证蒸散发模型提供基础数据。③应用试验在流域上、中、下游分别开展针对积雪和冻土水文、灌溉水平衡和作物生长、生态耗水的综合观测试验,将观测数据和遥感产品用于上游分布式水文模型、中游地表水—地下水—农作物生长耦合模型、下游生态耗水模型,通过实证研究提升遥感在流域生态—水文集成研究和水资源管理中的应用能力。加强试验将在2012年5月起按中游、上游、下游的顺序展开,全流域持续观测期为2013—2015年。在各类试验的支持下,开展全流域生态—水文关键参量遥感产品生产,发展尺度转换方法,建立多源遥感数据同化系统。

References

[1]  Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectives and experiment design [J]. Advances in Earth Science, 2008, 23(9): 897-914.[李新, 马明国, 王建, 等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.]
[2]  Li X, Li X W, Li Z Y, et al. Watershed allied telemetry experimental research [J]. Journal of Geophysical Research, 2009, 114:(D22103), doi:10.1029/2008JD011590.
[3]  Cheng Guodong. Integrated Management of the Water-Ecology-Economy System in the Heihe River Basin [M]. Beijing: Science Press, 2009:581.[程国栋. 黑河流域水—生态—经济系统综合管理研究 [M]. 北京: 科学出版社, 2009:581.]
[4]  Li Xin, Cheng Guodong. On the watershed observing and modeling systems [J]. Advances in Earth Science, 2008, 23(7): 756-764.[李新, 程国栋. 流域科学研究中的观测和模型系统建设 [J]. 地球科学进展, 2008, 23(7): 756-764.]
[5]  Committee on U.S. Geological Survey, National Research Council. Watershed Research in the U.S. Geological Survey [M]. Washington, DC: National Academies Press, 1997:96.
[6]  Committee on Watershed Management, National Research Council. New Strategies for America’s Watersheds [M]. Washington DC: National Academies Press, 1999:328.
[7]  Consortium of Universities for the Advancement of Hydrologic Science. Hydrology of a Dynamic Earth [R]. Consortium of Universities for the Advancement of Hydrologic Science, Inc., 2007.
[8]  NRC: Committee on the Review of Water and Environmental Research Systems (WATERS) Network, National Research Council. Review of the WATERS Network Science Plan [M]. Washington DC: National Academies Press, 2010:88.
[9]  Bogena H, Schulz K, Vereecken H. Towards a network of observatories in terrestrial environmental research [J]. Advances in Geosciences, 2006, 9: 109-114.
[10]  Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain [J]. Water Resources Research, 1994, 30(6): 1 665-1 679.
[11]  Arnold J G, Fohrer N. SWAT2000: Current capabilities and research opportunities in applied watershed modeling [J]. Hydrological Processes, 2005, 19(3): 563-572.
[12]  Rigon R, Bertoldi G, Over T M. GEOtop: A distributed hydrological model with coupled water and energy budgets[J].Journal of Hydrometeorology, 2006, 7(3): 371-388.
[13]  Harbaugh A W, Banta E R, Hill M C, et al. MODFlow-2000, The U.S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process[R].CO: U.S. Geological Survey,Denver, 2000.
[14]  Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model [J]. Global Change Biology, 2003, 9(2): 161-185.
[15]  Thornton P E, Running S W. User’s Guide for Biome-BGC, Version 4.1.2[Z].USA, 2002.
[16]  Vandiepen C A, Wolf J, Vankeulen H, et al. WOFOST—A simulation-model of crop production [J]. Soil Use and Management, 1989, 5(1): 16-24.
[17]  Committee on River Science at the U.S. Geological Survey, National Research Council. River Science at the U.S. Geological Survey [M].Washington, DC: National Academies Press, 2007:206.
[18]  Li Xin, Cheng Guodong, Ma Mingguo, et al. Digital Heihe River Basin. 4: Watershed observing system [J]. Advances in Earth Science, 2010, 25(8): 866-876.[李新, 程国栋, 马明国, 等. 数字黑河的思考与实践4:流域观测系统 [J]. 地球科学进展, 2010, 25(8): 866-876.]
[19]  Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation [J]. Journal of Climate, 1996, 9(4): 676-705.
[20]  Dai Y, Zeng X, Dickinson R E, et al. The common land model [J]. Bulletin of American Meteorological Society, 2003, 84(8): 1 013-1 023.
[21]  Oleson K W, Lawrence D M, Bonan G B, et al. Technical Description of Version 4.0 of the Community Land Model (CLM)[R]. NCAR/TN-478+STR, Boulder, CO: National Center for Atmospheric Research, 2010:257.
[22]  Zhang Y L, Cheng G D, Li X, et al. Coupling the Simultaneous Heat and Water model (SHAW) with a distributed hydrological model and its evaluation of the combined model in a cold region watershed [J]. Hydrological Processes, 2012(submitted).
[23]  Zhou J, Hu B X, Cheng G D, et al. Development of a three-dimensional watershed modelling system for water cycle in the middle part of the Heihe rivershed, in the west of China [J]. Hydrological Processes, 2011, 25(12): 1 964-1 978.
[24]  Zhou J, Cheng G D, Li X, et al. Numerical modeling of wheat irrigation using coupled HYDRUS and WOFOST models [J]. Soil Science Society of America Journal,2012,76(2):648-662, doi:10.2136/sssaj2010.0467.
[25]  Tian W, Li X, Wang X S, et al. Coupling a groundwater model with a land surface model to improve the water and energy cycle simulation [J]. Hydrology and Earth System Sciences, 2012(submitted).
[26]  Pomeroy J W, Gray D M, Brown T, et al. The cold regions hydrological process representation and model: A platform for basing model structure on physical evidence [J]. Hydrological Processes, 2007, 21(19): 2 650-2 667.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133