全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

断层内部结构及其对封闭性的影响

DOI: 10.11867/j.issn.1001-8166.2012.02.0154, PP. 154-164

Keywords: 断裂结构,断层岩,渗透率,排替压力

Full-Text   Cite this paper   Add to My Lib

Abstract:

先前的研究多考虑断层封堵和开启的2种极端状态,近来的研究认为,在多数情况下断层处于2种之间的状态,只有在静止期具有封闭能力的断层,才有可能对油气起封堵作用。分析断层对流体运移的影响,需要分析断层在演化过程中的内部结构特征。断层可以划分出破碎带、诱导裂缝带和围岩3部分,断层岩和伴生裂缝构成破碎带的主体部分。常见的断层岩包括断层角砾岩、断层泥和部分碎裂岩,它们充填在断层裂缝空间中,断层内部结构受断层形成时的构造应力性质、断层活动强度和围岩岩性因素的控制。从动态角度看,随着断距增加,断层活动伴随着裂缝的发育和岩石的破碎混杂,可用泥质源岩层厚度和断距的比值来划分不同的发育阶段。断层活动期为油气运移通道,在静止时表现出差异性的封闭,通常用断层渗透率和排替压力2个参数来定量评价断层的封闭程度。断层岩渗透率主要受断距、泥质含量、埋深等因素的控制;断层排替压力的预测方法有2种一种是从断层岩成岩角度分析的“等效埋深法”,另一种是分析实测排替压力与主控地质因素的“拟合法”。通过简化的断层模型,建立了渗透率、排替压力与主控因素的预测关系。和储层类似,流体在断层中的运移遵循多孔介质的渗流特征。利用断层两侧的流体压力和油气柱高度并不能直接评价封闭性能,还必须考虑油气充注史和流体压力变化历史。

References

[1]  Davatzes N C, Aydin A. Distribution and Nature of Fault Architecture in a Layered Sandstone and Shale Sequence: An Example from the Moab Fault, Utah. In Faults, Fluid Flow & Petroleum Traps[M]. Canada: AAPG Memoir 85, 2005.
[2]  Sibson R H, Moore Mc M, Rankin A H. Seismic pumping—A hydrothermal fluid transport mechanism[J]. Journal of Geology Society, 1975, 131(6): 653-660.
[3]  Hooper. Fluid migration along growth faults in compacting sediments[J].Journal of Petroleum Geology,1991,4(2):161-180.
[4]  Sperrvik S,Gillespie P A, Fisher Q J, et al. Empirical Estimation of Fault Rock Properties[C]∥Koestler A G, Hunsdale R. Hydrocarbon Seal Qualitification. Norwegian Petroleum Society Special Publication, 2002:109-125.
[5]  Lü Yanfang, Sun Yonghe, Fu Xiaofei, et al. Physical experiment of gas migration along reverse fault[J].Chinese Journal of Geology,2005, 40(4): 464-475. [吕延防,孙永河,付晓飞. 逆断层中天然气运移特征的物理模拟[J]. 地质科学, 2005, 40(4): 464-475.]
[6]  Manzocchi T, Walsh J J, Nell P, et al. Fault transmissibility multipliers for flow simulation models[J]. Petroleum Geoscience, 1999, 5(1): 53-63.
[7]  Evans J P. Thickness displacement relationships for fault zones[J]. Journal of Structural Geology, 1990, 12(8): 1 061-1 065.
[8]  Sorkhabi R B,Hasegawa S, Iwanaga S, et al. Sealing assessment of normal faults in clastic reservoirs: The role of geometry and shale smear parameters[J]. Journal of Japanese Association of Petroleum Technology, 2002, 67(6): 576-589.
[9]  Hesthammer J, Bj?rkum P A, Watts L. The effect of temperature on sealing capacity of faults in sandstone reservoirs: Examples from the Gullfaks and Gullfaks Sor Fields, North Sea[J]. AAPG Bulletin, 2002, 86(10): 1 733-1 751.
[10]  Hipper S J. Microstructures and diagenesis in North Sea Fault zone: Implications for Fault-Seal potential and Fault-Migration rate[C]∥Sundram R C. Seals, Traps, and the Petroleum System. AAPG Memoir 67, 1997:103-131.
[11]  Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection capillary pressure curves for sandstone[J]. AAPG Bulletin, 1992, 76(2): 191-198.
[12]  Lü Yanfang, Huang Jinsong, Fu Guang, et al. Quantitative study on fault sealing ability in sandstone and mudstone thin interbed[J].Acta Petrolei Sinica,2009, 30(6): 824-829.[吕延防,黄劲松,付广,等. 砂泥岩薄互层段中断层封闭性的定量研究 [J]. 石油学报, 2009, 30(6): 824-829.]
[13]  Zhou Xingui. The study of fault closure by use of entry pressure and its application in North Tarim[J]. Journal of Geomechanics,1997, 3(2):47-53.[周新桂. 利用排驱压力研究断裂封闭性及其在塔里木盆地北部地区的应用 [J]. 地质力学学报, 1997, 3(2): 47-53.]
[14]  Koledoye B, Aydin A, May A. A new process-based methodology for analysis of shale smear along normal faults in the Niger Delta[J]. AAPG Bulletin, 2003, 87(3): 445-463.
[15]  Bretan P, Yielding G, Jones H. Using calibrated shale gouge ratio to estimate hydrocarbon column heights[J]. AAPG Bulletin,2003, 87(3): 397-413.
[16]  Brown A. Capillary effects on fault-fill sealing[J]. AAPG Bulletin, 2003, 87(3): 381-395.
[17]  Heum O R. A fluid dynamic classification of hydrocarbon entrapment[J].Petroleum Geoscience, 1996, 2(2): 145-158.
[18]  Smith D A. Sealing and nonsealing faults in Lousiana Gulf Coast Salt Basin [J]. AAPG Bulletin,1980, 64(1): 145-172.
[19]  Lü Yanfang, Fu Guang, Zhang Yunfeng. Fault Sealing Analysis[M]. Beijing: Petroleum Industry Press, 2002.[吕延防,付广,张云峰. 断层封闭性研究[M]. 北京: 石油工业出版社,2002.]
[20]  Watts N L. Theoretical aspects of cap-rock and fault seals for single and two phase hydro-carbon columns[J].Marine and Petroleum Geology,1987, 4(4): 274-307.
[21]  Downey M W. Evaluating seals for hydrocarbon accumulation[J]. AAPG Bulletin, 1973, 68(11): 1 752-1 763.
[22]  Yielding G,Freeman G,Needham B. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6): 897-917.
[23]  Gibson R G. Fault-zone seals in siliciclastic strata of the Columbus Basin, Offshore Trinidad[J]. AAPG Bulletin, 1994, 78(9): 1 372-1 385.
[24]  Bouvier J D, Kaars-Sijpesteijn C H, Kluesner D F, et al. Three-dimensional seismic interpretation and fault sealing investigation, Nun River Field, Nigeria [J]. AAPG Bulletin, 1989, 73(11): 1 397-1 414.
[25]  Lindsay N G, Murphy F C, Walsh J J. et al. Outcrop studies of shale smear on fault surface[J]. International Association of Sedimentologists Special Publication, 1993, 15(1):113-123.
[26]  Fisher Q J, Knipe R J. Fault Sealing Processes in Siliclastic Sentiments, in Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs [M]. London: Geological Special Publication, 1998.
[27]  Doughty P T. Clay smear seals and fault sealing potential of an exhumed growth fault, Rio Grande Rift, New Mexico[J]. AAPG Bulletin, 2003, 87(3): 427-444.
[28]  Fisher Q J, Harris S D, McAllister E, et al. Hydrocarbon flow across faults by Capillary Leakage revisited[J].Marine and Petroleum Geology,2001,18(2):251-257.
[29]  Caine J S, Evans J P, Forster C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1 025-1 028.
[30]  Yehuda Benzion, Charles G S. Characterization of fault zone[J]. Pure and Applied Geophysics,2003, 160(3/4): 677-715.
[31]  Gudmundsson A, Berg S, Lyslo K B, et al. Fracture networks and fluid transport in active fault zone[J]. Journal of Structure Geology,2001, 23(2/3): 343-353.
[32]  Ramsey J G. Shear zone geometry: A review[J].Journal of Structural Geology, 1980, 2(1/2): 83-99.
[33]  He Yongnian, Lin Chuanyong, Shi Lanbin. An Outline of Structural Petrology [M]. Beijing: Geological Publishing House, 1988:127-140.[何永年,林传勇,史兰斌. 构造岩石学基础 [M]. 北京:地质出版社,1988: 127-140.]
[34]  Gartrell A, Bailey W R, Brincat M. A new model for assessing trap integrity and oil preservation risks associated with post rift fault reactivation in the Timor Sea[J]. AAPG Bulletin, 2006, 90(12): 1 921-1 944.
[35]  Zhu Zhicheng. Structural Geology[M]. Wuhan:China University of Geosciences Press, 1999.[朱志澄. 构造地质学[M]. 武汉: 中国地质大学出版社, 1999.]
[36]  Wu Hongling. Analysis on the mechanical properties of a tensile structure plane and its relationship to principal stresses[J]. Geological Review, 1999, 45(5):449-455. [武红岭. 张性结构面的力学性质与主应力关系解析[J]. 地质论评, 1999, 45(5): 449-455.]
[37]  Ding Wenlong, Xu Changchun, Jiu Kai, et al. The research progress of shale fractures[J]. Advances in Earth Science,2011, 26(2): 135-144.[丁文龙,许长春,久凯,等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.]
[38]  Luo Qun, Jiang Zhenxue, Pang Xiongqi. Mechanism and Model of Fault Controlling Petroleum Accumulation [M]. Beijing: Petroleum Industry Press, 2007: 279-303. [罗群,姜振学,庞雄奇. 断裂控烃机理与模式 [M]. 北京: 石油工业出版社, 2007:279-303.]
[39]  Fu Xiaofei ,Fang Deqing, Lü Yanfang,et al. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones[J].Earth Science, 2005, 30(3): 328-336.[付晓飞,方德庆,吕延防,等. 从断裂带内部结构出发评价断层垂向封闭性的方法[J]. 地球科学, 2005, 30(3): 328-336.]
[40]  Wu Zhiping, Chen Wei, Xue Yan, et al. Structural characteristics of faulting lone and its ability in transporting and sealing oil and gas[J]. Acta Geological Sinica, 2010,84(4):570-578.[吴智平,陈伟,薛雁,等. 断裂带的结构特征及其对油气的输导和封堵性 [J]. 地质学报, 2010, 84(4): 570-578.]
[41]  Aydin A, Johnson A M. Development of faults as zones of deformation bands and as slip surfaces in sandstone[J].Pure and Applied Geophysics, 1978, 11(6): 931-942.
[42]  Antonellini M, Aydin A, Bridge D. Effect of faulting on fluid-flow in porous sandstones-petrophysical properties[J]. AAPG Bulletin, 1994, 78(3): 355-377.
[43]  Childs C,Watterson J, Walsh J J. A model for the structure and development of fault zones[J]. Journal of the Geological Society, 1996, 153(1): 337-340.
[44]  Yang Weiran, Zhang Wenhuai. Tectonic fluids—A new research Doman [J]. Earth Science Frontiers, 1996,3(3):124-130.[杨巍然,张文淮. 构造流体——一个新的研究领域 [J]. 地学前缘, 1996, 3(3): 124-130.]
[45]  Zhao Jun, Zheng Guodong, Fu Bihong. Current development of tectonic-geochemical studies of active fault zones[J]. Advances in Earth Science,2009, 24(10): 1 130-1 137.[赵军,郑国东,付碧宏. 活动断层的构造地球化学研究现状 [J]. 地球科学进展, 2009, 24(10): 1 130-1 137.]
[46]  Zhou Linshuai, Zhang Weihai, Huang Feng, et al. Determination of shale content in fault filling material and evaluation of fault sealing[J].Fault-Block Oil & Gas Field,2010,17(2):173-176.[周林帅,张卫海,黄峰, 等. 断裂带充填物中泥质质量分数的确定及断层封闭性评价 [J]. 断块油气田, 2010, 17(2): 173-176.]
[47]  Liu Jin, Song Guoqi, Hao Xuefeng, et al. Characteristics of fault cementation zone and its origin in Linpan Oil Pool of the Huimin Depression[J]. Earth Science,2011, 36(6): 1 119-1 124.[刘金,宋国奇,郝雪峰, 等. 惠民凹陷临盘油区断裂胶结带基本特征及形成机制[J]. 地球科学, 2011, 36(6): 1 119-1 124.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133