全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

陆地硅的生物地球化学循环研究进展

DOI: 10.11867/j.issn.1001-8166.2012.07.0725, PP. 725-732

Keywords: 化学风化,生物硅,生物地球化学循环,同位素,硅

Full-Text   Cite this paper   Add to My Lib

Abstract:

地球表层硅(Si)的生物地球化学循环与大气CO2浓度变化、大洋生物泵作用以及海岸带富营养化等过程密切相关,因此成为全球环境变化研究的核心问题之一。在地质时间尺度上,硅酸盐矿物的化学风化是地球表层所有次生Si的来源。陆地生态系统各次生Si库具有不同的形成机制和驱动因子,这导致各Si库的贮存量和循环周期存在明显差异。土壤Si库中的黏土矿物Si、溶解硅(DSi)和淀积在其他矿物表面的无定形Si都源自硅酸盐矿物的化学风化过程;植物生长过程中吸收土壤中的DSi形成生物Si,然后经微生物分解过程返还给土壤;地表径流将流域陆源Si以悬移质Si和DSi的形式输入河流、海洋。迄今,陆地不同形态Si库的大小及其对全球Si循环的贡献仍不确定。因此,在研究陆地Si的生物地球化学循环过程中,综合考虑各种地表过程及其耦合作用是非常必要的。

References

[1]  Tao Z, Gao Q Z, Wang Z G, et al. Estimation of carbon sinks in chemical weathering in a humid subtropical mountainous basin[J]. Chinese Science Bulletin, 2011, 56(35): 3 774-3 782.
[2]  Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428.
[3]  Hren M T, Chamberlain C P, Hilley G E, et al. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra River: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya[J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 2 907-2 935.
[4]  Wu W H, Xu S J, Yang J D, et al. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau[J]. Chemical Geology, 2008, 249(3/4): 307-320.
[5]  McLennan S M. Weathering and global denudation[J]. Journal of Geology, 1993, 101(2): 295-303.
[6]  Summerfield M A, Hulton N J. Natural controls of fluvial denudation rates in major world drainage basins[J]. Journal of Geophysical Research, 1994, 99(B7): 13 871-13 883.
[7]  Milliman J D, Meade R H. World-wide delivery of sediment to the oceans[J]. Journal of Geology, 1983, 91(1): 1-21.
[8]  Komor S C. Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3 353-3 367.
[9]  Bennet P C, Siegel D I, Hill B M, et al. Fate of silicate minerals in a peat bog[J]. Geology, 1991, 19(4): 328-331.
[10]  Jones L H P, Handreck K A. Silica in soils, plants, and animals[J]. Advances in Agronomy, 1967, 19: 107-149.
[11]  Conley D J. Riverine contribution of biogenic silica to the oceanic silica budget[J]. Limnology and Oceanography, 1997, 42(4): 774-777.
[12]  Ding Tiping.Silicon Istope Geochemistry[M].Beijing: Geological Publishing House,1994:17-63.[丁悌平. 硅同位素地球化学[M]. 北京: 地质出版社, 1994:17-63.]
[13]  Van Cappellen P. Biomineralization and global biogeochemical cycles[J]. Reviews in Mineralogy & Geochemistry, 2003, 54: 357-381.
[14]  Lü Houyuan, Liu Tungsheng, Wu Naiqin, et al. Phytolith record of vegetation succession in the southern loess plateau science Late Pleistocene[J]. Quaternary Sciences, 1991, 19(4): 336-349.[吕厚远,刘东生,吴乃琴, 等,末次间冰期以来黄土高原南部植被演替的植物硅酸体记录[J]. 第四纪研究, 1999, 19(4): 336-349.]
[15]  Van Hees P A W, Jones D L, Jentschke G, et al. Mobilization of aluminum, iron and silicon by Picea abies and ectomycorrhizas in a forest soil[J]. European Journal of Soil Science, 2004, 55(1): 101-111.
[16]  Smits M M, Hoffland E, Jongmans A G, et al. Contribution of mineral tunneling to total feldspar weathering[J]. Geoderma, 2005, 125(1/2): 59-69.
[17]  He Yue, Zhang Ganlin. Biogenic silicon in basalt-derived soils in Hainan Island and its implications in Pedogensis[J].Acta Pedologica Sinica, 2010, 47(3): 385-392.[何跃, 张甘霖. 热带地区玄武岩发育土壤中的生物硅及其发生学意义[J]. 土壤学报, 2010, 47(3): 385-392.]
[18]  Bartoli F. The biogeochemical cycle of silicon in two temperate forest ecosystems[J]. Environmental Biogeochemistry and Ecology Bulletin, 1983, 35(35): 469-476.
[19]  Cary L,Alexandre A,Meunier J D,et al. Contribution of phytoliths to the suspended load of biogenic silica in the Nyong Basin rivers (Cameroon)[J].Biogeochemistry, 2005,74(1):101-114.
[20]  Lucas Y. The role of plants in controlling rates and products of weathering: Importance of biological pumping[J]. Annual Review of Earth and Planetary Sciences, 2001, 29: 135-163.
[21]  Douthitt C B. The geochemistry of the stable isotopes of silicon[J]. Geochimica et Cosmochimica Acta, 1982, 46(8): 1 449-1 458.
[22]  Ding T, Wan D, Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.
[23]  Tu Guangzhi, Gao Zhenmin, Hu Ruizhong, et al. The Geochemistry and Depoist—Forming Mechanism of Disperse Element[M]. Beijing: Geological Publishing House, 2004:10-117.[涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及成矿机制[M]. 北京: 地质出版社, 2004:10-117.]
[24]  Evans M J, Derry L A. Quartz control of high germanium/silicon ratios in geothermal waters[J]. Geology, 2003, 30(11): 1 019-1 022.
[25]  Kurtz A C, Derry L A, Chadwick O A. Germanium-silicon fractionation in the weathering environment[J]. Geochimica et Cosmochimica Acta, 2002, 66(9): 1 525-1 537.
[26]  Bernstein L R. Germanium geochemistry and mineralogy[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2 409-2 422.
[27]  Pokrovski G S, Schott J. Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters[J]. Geochimica et Cosmochimica Acta, 1998, 62(21/22): 3 413-3 428.
[28]  Liu Yingjun, Cao Liming, Li Zhaolin, et al. Elemental Geochemistry[M]. Beijing: Science Press,1984.[刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.]
[29]  Olivier R, Galy A, Elderfield H. Germanium isotopic variations in igneous rocks and marine sediments[J]. Geochimica et Cosmochimica Acta,2006, 70(13): 3 387-3 400.
[30]  Christoph Humborg, Venugo palan Ittekkot, Adriana Cociasu, et al. Effect of Danube River Dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature, 1997, 386(27): 385-388.
[31]  Li Maotian, Cheng Heqin. Changes of dissolved silicate flux from the Changjiang River into sea and its influence since late 50 years[J]. China Environmental Science, 2001, 21(3): 193-197.[李茂田, 程和琴. 近50年来长江入海溶解硅通量变化及其影响[J]. 中国环境科学, 2001, 21(3): 193-197.]
[32]  Conley D J, Humborg C, Smedberg E, et al. Past, present and future state of the biogeochemical Si cycle in the Baltic Sea[J]. Journal of Marine Systems, 2008, 73(3/4): 338-346.
[33]  Syvitski J P M, Vorosmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308(5 720): 376-380.
[34]  Schelske C L, Stoermer E F, Conley D J, et al. Early eutrophication in the lower Great Lakes: New evidence from biogenic silica in sediments[J]. Science, 1983, 222(4 621): 320-322.
[35]  Wedepohl K H. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1 217-1 232.
[36]  Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3-30.
[37]  Ragueneau O, Treguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26(4): 317-365.
[38]  Alexandre A, Meunier J D, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes[J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 677-682.
[39]  Moulton K L, West J, Berner R A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering[J]. American Journal of Science, 2000, 300(7): 539-570.
[40]  Ittekot V, Unger D, Humborg C, et al. The Silicon Cycle[M]. Washington DC: Island Press, 2006.
[41]  Street-Perrott F A, Barker P A. Biogenic silica: A neglected component of the coupled global continental biogeochemical cycles of carbon and silicon[J]. Earth Surface Processes and Landforms, 2008, 33(9): 1 436-1 457.
[42]  Struyf E, Conley D J. Silica: An essential nutrient in wetland biogeochemistry[J]. Frontiers in Ecology and the Environment, 2009, 7(2): 88-94.
[43]  Ding T P, Gao J F, Tian S H, et al. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6 672-6 689.
[44]  Meunier J D, Colin F, Alarcon C. Biogenic silica storage in soils[J]. Geology, 1999, 27(9): 835-838.
[45]  Clarke J. The occurrence and significance of biogenic opal in the regolith[J]. Earth Science Reviews, 2003, 60(3/4): 175-194.
[46]  Sommer M, Kaczorek D, Kuzyakov Y, et al. Silicon pools and fluxes in soils and landscapes—A review[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(4): 310-329.
[47]  Conley D J. Terrestrial ecosystems and the global biogeochemical silica cycle[J]. Global Biogeochemical Cycles, 2002, 16(4): 1 121-1 129.
[48]  Derry L A, Kurtz A C, Ziegler K, et al. Biological control of terrestrial silica cycling and export fluxes to watersheds[J]. Nature,2005, 433(7 027): 728-731.
[49]  Meunier J D, Kirman S, Strasberg D, et al. The output and bio-cycling of Si in a tropical rain forest developed on young basalt flows (La Reunion Island)[J]. Geoderma, 2010, 159(3/4): 431-439.
[50]  Urey H C. The Planets, Their Origin and Development[M]. New Haven: Yale University Press, 1952.
[51]  Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate[J]. Science, 1995, 268(5 209): 375-379.
[52]  Meybeck M. How to establish and use world budgets of riverine materials [C]∥Lerman A, Meybeck M, eds. Physical and Chemical Weathering in Geochemical Cycles. Dordrecht: Kluwer Academic Publisher, 1988: 247-272.
[53]  Murname R J, Stallard R F. Germanium and silicon in rivers of the Orinoco Drainage Basin[J]. Nature, 1990, 344(6 268): 749-752.
[54]  Gao Q Z, Tao Z, Huang X K, et al. Chemical weathering and CO2 consumption in the Xijiang River Basin, South China[J]. Geomorphology, 2009, 106(3/4): 324-332.
[55]  Gao Q Z, Tao Z. Chemical weathering and chemical runoff in the seashore granite hills in South China[J]. Science in China (Series D),2010, 53(8): 1 195-1 204.
[56]  Monger H C, Kelly E F. Silica minerals[C]∥Dixon J B, Schulze D G. Soil Mineralogy with Environmental Applications. Book Series SSSA No.7, Madison, 2002: 611-636.
[57]  Gerard F, Francois M, Ranger J. Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhone, France)[J]. Geoderma, 2002, 107(3/4): 197-226.
[58]  Farmer V C, Lumsdon D G. An assessment of complex formation between aluminum and silicic acid in acidic solutions[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3 331-3 334.
[59]  Dove P M. Kinetic and thermodynamic controls on silica reactivity in weathering environments[C]∥White A F, Brantley S L, eds. Chemical Weathering Rates of Silicate Minerals: Reviews in Mineralogy. 1995,31(1): 235-290.
[60]  Dietzel M. Interaction of polysilicic and monosilicic acid with mineral surfaces[C]∥Stober I, Bucher K, eds. Water-Rock Interaction. Netherlands: Kluwer, 2002: 207-235.
[61]  Dietzel M. Dissolution of silicates and the stability of polysilicic acid[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3 275-3 281.
[62]  Richards P L, Kump L R. Soil pore-water distribution and the temperature feedback of weathering in soils[J]. Geochimica et Cosmochimica Acta, 2003, 67(20): 3 803-3 815.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133