全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

认知无线电中改进的低复杂度联合检测方法

DOI: 10.13190/jbupt.201302.89.liyx, PP. 89-92

Keywords: 认知无线电,似然比检测,联合频谱检测,能量检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

认知无线电频谱检测中能量检测算法在低信噪比下检测效率低,而似然比检测(LRT)算法复杂度过高.对此,首先在低信噪比下对LRT算法进行了化简,并给出了化简LRT算法性能参数的闭合表达式;提出了一种联合检测算法,在低信噪比条件下采用能量与简化LRT二次检测,在其他条件下则采用能量检测.理论分析和仿真结果均表明,所提算法在低信噪比下能对主用户信号有效检测,且实现复杂度低,检测性能优于LRT算法.

References

[1]  Zeng Yonghong, Liang Yingchang, Anh Tuan Hoang, et al. A review on spectrum sensing for cognitive radio: challenges and solutions [J]. Eurasip J Adv Sig Pr, 2012(2): 1-16.
[2]  Kay S M. Fundamentals of statistical signal processing: detection theory [M]. : Prentice Hall, 1998.
[3]  Quan Zhi, Zhang Wenyi, Shellhammer S J, et al. Optimal spectral feature detection for spectrum sensing at very low SNR [J]. Ieee T Commun, 2011, 59 (1): 201-212.
[4]  宋敬群, 薛剑韬, 冯志勇. 认知无线电网络中合作频谱感知参数优化 [J]. 北京邮电大学学报, 2011, 34(1): 111-115. Song Jingqun, Xue Jiantao, Feng Zhiyong. Parameters optimization for cooperative spectrum sensing in cognitive radio networks[J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(1): 111-115.
[5]  Zeng Yonghong, Liang Yingchang. Spectrum sensing algorithms for cognitive radio based on statistical covariances [J]. Vehicular Technology, IEEE Transactions on, 2009, 58 (4): 1804-1815.
[6]  Zhang Wensheng, Abreu G, Inamori M, et al. Spectrum sensing algorithms via finite random matrices [J]. Ieee T Commun, 2012, 60(1): 164-175.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133