全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于PureSVD模型的协同过滤主动采样

DOI: 10.13190/jbupt.201304.21.047, PP. 23-26

Keywords: 推荐系统,冷启动,主动学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种最大化参数变化的主动采样方法,可快速捕捉推荐系统中新用户的兴趣偏好.该方法在纯奇异值分解(PureSVD)模型的基础上,选取最大化模型参数变化的样本,然后向新用户查询样本物品的评分.得到的评分用来训练用户的纯奇异值分解模型参数,进而提供推荐列表.基于贪婪法提出了一种快速的近似采样算法,能在可接受的时间内得到采样列表.实验结果证明,在Movielens数据集上,该方法能在Top-N的标准下使用较小的样本,有效地提高了学习新用户偏好的效率.

References

[1]  Koren Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, Nevada: ACM, 2008: 426-434.
[2]  Settles B, Craven M, Ray S. Multiple-instance active learning[C]//Advances in Neural Information Processing Systems (NIPS).[S.l]: MIT Press, 2008: 1289-1296.
[3]  Cremonesi P, Koren Y, Turrin R. Performance of recommender algorithms on top-n recommendation tasks[C]//Proceedings of the Fourth ACM Conference on Recommender Systems-RecSys10. New York: ACM, 2010: 39-47.
[4]  Schein A I, Popescul A, Ungar L H, et al. Methods and metrics for cold-start recommendations[C]//Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Tampere: ACM, 2002: 253-260.
[5]  Zhang Z K, Liu C, Zhang Y C, et al. Solving the cold-start problem in recommender systems with social tags[J]. EPL (Europhysics Letters), 2010, 92(28): 2.
[6]  Rubens N, Kaplan D, Sugiyama M. Recommender systems handbook[M]. Berlin: Springer, 2011: 735-767.
[7]  Huang Z. Selectively acquiring ratings for product recommendation[C]//Proceedings of the Ninth International Conference on Electronic Commerce. Minneapolis: ACM, 2007: 379-388.
[8]  Boutilier C, Zemel R S, Marlin B. Active collaborative filtering[C]//Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufman, 2003: 98-106.
[9]  Jin R, Si L. A Bayesian approach toward active learning for collaborative filtering[C]//Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. Banff: AUAI Press, 2004: 278-285.
[10]  Harpale A S, Yang Y. Personalized active learning for collaborative filtering[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore: ACM, 2008: 91-98.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133