全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于流形排序的社会化推荐方法

DOI: 10.13190/j.jbupt.2014.03.004, PP. 18-22

Keywords: 社会化推荐,流形排序,矩阵分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于流形排序和社会化矩阵分解的推荐方法,采用流形排序方法度量用户间的社会相似度,利用正则化技术构建用于评分矩阵因式分解的目标函数,将用户之间的偏好差异作为目标函数的惩罚项,从而将用户之间的社会相似性融入评分矩阵的低阶矩阵分解过程.实验结果表明,在大型的数据集上,该方法获得了比当前同类方法更好的推荐精度和更低的评分预测均方根误差/评分预测平均绝对误差(RMSE/MAE)值.

References

[1]  Reid Andersen, Christian Borgs, Jennifer Chayes, Uriel Feige, Abraham Flaxman, Adam Kalai, Vahab Mirrokni, and Moshe Tennenholtz. Trust-based recommendation systems: an axiomatic approach. In Proceedings of the 17th international conference on World Wide Web, pages 199–208. ACM, 2008.
[2]  John Canny. Collaborative filtering with privacy via factor analysis. In SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pages 238–245, New York, NY, USA, 2002. ACM.
[3]  Jennifer Golbeck. Computing and Applying Trust in Web-based Social Networks. PhD thesis, 2005.
[4]  Jingrui He, Mingjing Li, Hong-Jiang Zhang, Hanghang Tong, and Changshui Zhang. Manifold-ranking based image retrieval. In Proceedings of the 12th annual ACM international conference on Multimedia, pages 9–16. ACM, 2004.
[5]  Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information Systems (TOIS), 22(1):89–115, 2004.
[6]  Mohsen Jamali and Martin Ester. Trustwalker: a random walk model for combining trust-based and item-based recommendation. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 397–406. ACM, 2009.
[7]  Mohsen Jamali and Martin Ester. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems, pages 135–142. ACM, 2010.
[8]  Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, March 1953.
[9]  Arnd Kohrs and Bernard Merialdo. Clustering for collaborative filtering applications. In In Computational Intelligence for Modelling, Control & Automation. IOS. Citeseer, 1999.
[10]  David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol., 58(7):1019–1031, May 2007.
[11]  Hao Ma, Irwin King, and Michael R Lyu. Learning to recommend with social trust ensemble. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 203–210. ACM, 2009.
[12]  Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. Sorec: social recommendation using probabilistic matrix factorization. In Proceedings of the 17th ACM conference on Information and knowledge management, pages 931–940. ACM, 2008.
[13]  Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin King. Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 287–296. ACM, 2011.
[14]  Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323–2326, 2000.
[15]  Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In Proceedings of the 25th international conference on Machine learning, pages 880–887. ACM, 2008.
[16]  Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. Advances in neural information processing systems, 20:1257–1264, 2008.
[17]  Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, pages 285–295, New York, NY, USA, 2001. ACM.
[18]  J. B. Tenenbaum. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, December 2000.
[19]  Xiaojun Wan, Jianwu Yang, and Jianguo Xiao. Manifold-ranking based topic-focused multi-document summarization. In Proceedings of IJCAI, volume 7, pages 2903–2908, 2007.
[20]  Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and Bernhard Sch?lkopf. Ranking on data manifolds. Advances in neural information processing systems, 16:169–176, 2003.
[21]  Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and Bernhard Sch?lkopf. Ranking on data manifolds. Advances in neural information processing systems, 16:169–176, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133