全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于反学习和正交交叉算子的元胞差分进化算法

DOI: 10.13190/j.jbupt.2014.03.002, PP. 7-12

Keywords: 差分进化算法,元胞自动机,反学习,正交交叉算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于正交交叉算子的元胞差分进化算法.进化初期采用反学习初始化方法获得初始候选种群,利用元胞结构的局部搜索方法替代控制参数调节差分进化算法的选择压力,从而平衡差分进化算法的探索能力和开发能力,利用元胞自动机的并行演化机制保持种群的多样性,从而避免陷入局部最优.该算法利用无交叉因子的正交交叉算子,通过多元素重复试验加速种群收敛速度.对多个典型测试函数的仿真实验结果表明,所提出的算法相较于多个差分进化改进算法具有更快的收敛速度和更好的计算精度.

References

[1]  Das S, Suganthan P N. Differential evolution: a survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31.
[2]  毕晓君, 刘国安. 基于云差分进化算法的约束多目标优化实现[J]. 哈尔滨工程大学学报, 2012, 33(8): 1022-1031. Bi Xiaojun, Liu Guoan. A cloud differential evolutionary algorithm for constrained multi-objective optimization[J]. Journal of Harbin Engineering University, 2012, 33(8): 1022-1031.
[3]  Jia Dongli, Zheng Guoxin, Khan M K. An effective memetic differential evolution algorithm based on chaotic local search[J]. Information Sciences, 2011, 181(15): 3175-3187.
[4]  Alba E, Tomassini M. Parallelism and evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(5): 443-462.
[5]  Alba E, Dorronsoro B. The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(2): 126-142.
[6]  鲁宇明, 黎明, 李凌. 一种具有演化规则的元胞遗传算法[J]. 电子学报, 2010, 38(7): 1603-1607. Lu Yuming, Li Ming, Li Ling. The cellular genetic algorithm with evolutionary rule[J]. Acta Electronica Sinica, 2010, 38(7): 1603-1607.
[7]  Dorronsoro B, Bouvry P. Cellular genetic algorithms without additional parameters[J]. Journal of Supercomputing, 2013, 63(3): 816-835.
[8]  Noman N, Vatanutanon J, Iba H. Tuning selection pressure in differential evolution using local selection[C]//2010 2nd World Congress on Nature and Biologically Inspired Computing (NaBIC2010). Kitakyushu: IEEE Computer Society, 2010: 66-71.
[9]  Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64-79.
[10]  Leung Y, Wang Yuping. An orthogonal genetic algorithm with quantization for global numberical optimization[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41-53.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133