全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

陕南伊迪卡拉纪末期的瓶状化石—可能最早的有孔虫化石

, PP. 1105-1114

Keywords: 高家山生物群,瓶状微化石,有孔虫

Full-Text   Cite this paper   Add to My Lib

Abstract:

?高家山生物群中的瓶状化石主要赋存在陕西宁强伊迪卡拉系灯影组高家山段黄褐色粉砂质碎屑岩和灰色含砂泥质灰岩中;其中,粉砂质碎屑岩中的化石丰度较高,并可见群体聚集(可达20~30个/10cm2),但未见连体囊壳.化石保存比较完好,具有完美的三维立体形态,可以用超声波仪振荡分离,完整地从围岩中剥离出来,目前完整分离出的化石有近千枚.显微镜下瓶状化石存在两类不同的化石保存方式:第一类化石具有白色壳壁,多未见明显变形,成分判断为碳酸钙.能谱分析显示其成分为CaO,扫描电镜和薄片揭示其结构具有多层式特点.另一类化石具有油脂光泽、色泽较深的外壳,显微镜下判断为硅质外壳.该类化石普遍有压扁现象,通过扫描电子显微镜能谱测试后证实,在显微镜下观察到的化石体壳壁多由硅质次生交代;壳壁多不规则,有时有明显分层及大小近乎一致的空洞,推测为原始胶结颗粒遭受次生溶蚀后所致,而瓶状化石腔内多为碳酸盐岩充填.两类不同成分、不同结构的化石类型可能分别对应着钙质和胶结类型的有孔虫,这可能是目前已知最早的有孔虫化石.

References

[1]  12 Porter S M, Meisterfeld R, Knoll A H. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. J Paleontol, 2003, 77: 409—429
[2]  13 Yin L M. Late Precambrian microfossils from the Diaoyutai Formation, Eastern Liaoning, China. Paper for the 5th International Conference. Nanjing: Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, 1980. 18
[3]  18 任才云, 刘联群, 周玉华, 等. 瓮安生物群中的瓶状微化石. 地球科学与环境学报, 2008, 30: 249—252
[4]  19 张录易, 李勇. 陕西宁强震旦纪末期的瓶状微化石. 西安地质矿产研究所所刊, 1991, (31): 77—86
[5]  20 张录易. 陕南震旦系灯影组瓶状微化石研究新进展. 甘肃地质学报, 1994, 3: 1—8
[6]  21 薛耀松, 周传明, 唐天福. 扬子区晚震旦世动物化石新材料. 古生物学报, 2002, 41: 137—141
[7]  22 段承华, 曹芳, 张录易. 陕西西乡灯影组顶部的瓶状微化石. 微体古生物学报, 1993, 10: 397—408
[8]  23 曹芳, 段承华, 张录易. 陕西宁强梅树村阶瓶状微化石的发现及其意义. 地质论评, 1995, 41: 355—362
[9]  24 曹芳. 中国瓶状微化石的研究. 微体古生物学报, 1998, 15: 404—416
[10]  25 张忠英. 浅议峡东陡山沱组的“瓶状微化石”. 微体古生物学报, 1994, 11: 369—371
[11]  26 钱逸, 张师本. 湖北房县灯影组西蒿坪段小壳化石. 古生物学报, 1983, 22: 82—94
[12]  6 Porter S M, Knoll A H. Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 2000, 26: 360—385
[13]  14 Zang W L, Walter M R. Late Proterozoic and Early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, central-eastern China. Precambrian Res, 1992, 57: 243—323
[14]  15 段承华, 曹芳. 湖北峡东前寒武纪瓶状微化石的新发现. 中国地质科学院天津地质矿产研究所所刊, 1989, (21): 130—147
[15]  16 吴祥和, 王尚彦. 贵州晚新元古代陡山沱磷块岩中疑似磷酸盐化原生动物化石. 微体古生物学报, 2004, 21: 194—198
[16]  17 Li Y, Guo J F, Zhang X L, et al. Vase-shaped microfossils from the Ediacaran Weng’an biota, Guizhou, South China. Gondwana Res, 2008, 14: 263—268
[17]  27 段承华. 湖北房县寒武纪初期的瓶状微化石. 天津地质矿产研究所所刊, 1986, (13): 87—120
[18]  28 Geng L Y, Zhang S B. Early Cambrian problematic fossils from Fangxian, Hubei, China. In: Stratigraphy and Paleontology of Systemic Boundaries in China. Precambrian-Cambrian Boundary (1). Nanjing: Nanjing University Press, 1987. 523—536
[19]  29 赵自强, 邢裕盛, 丁启秀, 等. 湖北震旦系. 北京: 中国地质大学出版社, 1988. 1—205
[20]  30 钱逸, 孙卫国, 何廷贵, 等. 陕南、鄂西下寒武统西蒿坪段“瓶状微化石”再研究. 微体古生物学报, 2000, 17: 317—326
[21]  31 张录易. 陕西宁强晚震旦世晚期高家山生物群的发现和初步研究. 中国地质科学院西安地质矿产研究所所刊, 1986, 13: 67—88
[22]  32 Cai Y, Hua H, Xiao S, et al. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerst?tte from southern Shaanxi, South China: Importance of event deposits. Palaios, 2010, 25: 487—506
[23]  33 Vénéc-Peyré M T, Jaeschke-boyer H. Application de la microsonde moléculaire à laser à Pétude du test de quelques Foraninifères cslcaires. Copt Rend Acad Sci Paris Sér D, 1978, 287: 607—609
[24]  34 Milliken K L, Choh S J, Papazis P, et al. “Cherty” stringers in the Barnett Shale are agglutinated foraminifera. Sediment Geol, 2007, 198: 221—232
[25]  35 Schieber J. Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas. Palaeogeogr Palaeocl Palaeoecol, 2009, 271: 292—300
[26]  36 Miller W III. Giant bathysiphon (Foraminiferida) from Cretaceous turbidites, Northern California. Lethaia, 1988, 21: 363—374
[27]  37 Streng M, Babcock L E, Hollingsworth J S. Agglutinated protists from the Lower Cambrian Nevada. J Paleontol, 2005, 79: 1214—1218
[28]  38 Hansen H J. Test structure and evolution in the Foraminifera. Lethaia, 1977, 122: 173—182
[29]  39 Pawlowski J, Holzmann M, Berney C. The evolution of early Foraminifera. Proc Natl Acad Sci USA, 2003, 100: 11494—11498
[30]  40 Langer M R. Origin of foraminifera: Conflicting molecular and paleontological data? Mar Micropaleontol, 1999, 38: 1—5
[31]  41 Flügel E. Microfacies of carbonate rocks—Analysis, Interpretation and Application. Berlin: Springer, 2004. 976
[32]  42 Marszalek D.S. Calcisphere ultrastructure and skeletal aragonite from the alga Acetabularia antillana. J Sediment Petrol, 1975, 45: 266—271
[33]  43 Samtleben C, Munnecke A, Bickert T, et al. Shell construction, assemblage and species dependent effects on the C/O-isotopic composition of brachiopods—Examples from the Silurian of Gotland. Chem Geol, 2001, 175: 61—107
[34]  44 Kazmierczak J. Volvocacean nature of some Paleozoic nonradiosphaerid calcispheres and parathuramminid “Foraminifera”. Acta Paleontol?
[35]  Pol, 1976, 10: 73—85
[36]  45 Kazmierczak J, Ittekkot V, Degens E T. Biocalcification through time: Environmental challenge and cellular response. Palaontol Zeitsch, 1985, 59: 15—33
[37]  46 Ausich W I, Bottjer D J. Sessile invertebrates. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. Oxford: Blackwell, 2001. 384—386
[38]  47 Clapham M E, Narbonne G M. Ediacaran epifaunal tiering. Geology, 2002. 30: 627—630
[39]  48 Yuan X, Xiao S X, Parsley R L, et al. Towering sponges in an Early Cambrian Lagerst?tte: Disparity between non-bilaterian and bilaterian epifaunal tiers during the Neoproterozoic-Cambrian transition. Geology, 2002, 30: 363—366
[40]  49 Clapham M E, Narbonne G M, Gehling J G. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 2003, 29: 527—544
[41]  50 Vermeij G J. Evolution and Escalation. Princeton: Princeton University Press, 1987
[42]  51 Bengtson S, Yue Z. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 1992, 257: 367—369
[43]  52 Hua H, Pratt B R, Zhang L Y. Borings in Cloudina shells: Complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 2003, 18: 454—459
[44]  53 Van Cappellen P. Biomineralization and global biogeochemical cycles. Rev Mineral Geochem, 2003, 54: 357—381
[45]  54 Westbroek P, Brown C W, Bleijswijk J V, et al. A model system approach to biological climate forcing: The example of Emiliania huxleyi. Global Planet Change, 1993, 8: 27—46
[46]  55 Bengtson S, Conway M S. Early radiation of biomineralizing phyla. In: Lipps J H, Signor P W, eds. Origin and Early Evolution of Metazoa. New York: Plenum Press, 1992. 447—481
[47]  56 Bengtson S. Mineralized skeletons and early animal evolution. In: Briggs D E G, ed. Evolving Form and Function: Fossils and Development. New Haven, CT: Yale Peabody Museum Publications, 2005. 101—124
[48]  57 Grant S W F. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am J Sci, 1990, 290-A: 261—294
[49]  58 Amthor J E, Grotzinger J P, Schr?der S, et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 2003, 31: 431—434
[50]  59 Hua H, Chen Z, Yuan X, et al. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 2005, 33: 277—280
[51]  60 Hua H, Chen Z, Yuan X. The advent of mineralized skeletons in Neoproterozoic Metazoa: New fossil evidence from the Gaojiashan Fauna. Geol J, 2007, 42: 263—279
[52]  61 Bowring S A, Grotzinger J P, Condon D J, et al. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am J Sci, 2007, 307: 1097—1145
[53]  62 Francis A M, Cohen P A, Dudás F ?, et al. Early Neoproterozoic scale microfossils in the Lower Tindir Group of Alaska and the Yukon Territory. Geology, 2010, 38: 143—146
[54]  1 Gaucher C, Sprechermann P. Upper Vendian skeletal fauna of the Arroyo del Sodado Group, Uruguay. Beringeria, 1999, 23: 55—91
[55]  2 Culver S J. Early Cambrian foraminifera from West Africa. Science, 1991, 254: 689—691
[56]  3 McIlroy D, Green O R, Brasier M D. Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia, 2001, 34: 13—29
[57]  4 Lipps J H, Rozanov A Y. The Late Precambrian-Cambrian agglutinated fossil Platysolenites. Palaeontol J, 1996, 10: 687—697
[58]  5 Knoll A H, Vidal G. Late Proterozoic vase-shaped microfossils from the Visings? Beds, Sweden. Geol F?reningen Stockholm F?rhandl, 1980, 102: 207—211
[59]  7 Bloeser B, Schopf J W, Horodyski R J, et al. Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona. Science, 1977, 195: 676—679
[60]  8 Bloeser B. Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. J Paleontol, 1985, 59: 741—765
[61]  9 Horodyski R J. A new occurrence of the vase-shaped fossil Melanocyrillium and new data on this relatively complex Late Precambrian
[62]  fossil. Geol Soc Amer Abstr Programs, 1987, 19: 707
[63]  10 Horodyski R J. Paleontology of Proterozoic shales and mudstones: Examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA. In: Nagy B, Leventhal J S, Grant R F, eds. Metalliferous Black Shales and Related Ore Deposits. Precambrian Res, 1993, 61: 241—278
[64]  11 Knoll A H, Calder S. Microbiotas of the late Precambrian Ryss? Formation, Nordaustlandet, Svalbard. Palaeontology, 1983, 26: 467—496

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133