12 Porter S M, Meisterfeld R, Knoll A H. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. J Paleontol, 2003, 77: 409—429
[2]
13 Yin L M. Late Precambrian microfossils from the Diaoyutai Formation, Eastern Liaoning, China. Paper for the 5th International Conference. Nanjing: Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, 1980. 18
6 Porter S M, Knoll A H. Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 2000, 26: 360—385
[13]
14 Zang W L, Walter M R. Late Proterozoic and Early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, central-eastern China. Precambrian Res, 1992, 57: 243—323
28 Geng L Y, Zhang S B. Early Cambrian problematic fossils from Fangxian, Hubei, China. In: Stratigraphy and Paleontology of Systemic Boundaries in China. Precambrian-Cambrian Boundary (1). Nanjing: Nanjing University Press, 1987. 523—536
32 Cai Y, Hua H, Xiao S, et al. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerst?tte from southern Shaanxi, South China: Importance of event deposits. Palaios, 2010, 25: 487—506
[23]
33 Vénéc-Peyré M T, Jaeschke-boyer H. Application de la microsonde moléculaire à laser à Pétude du test de quelques Foraninifères cslcaires. Copt Rend Acad Sci Paris Sér D, 1978, 287: 607—609
[24]
34 Milliken K L, Choh S J, Papazis P, et al. “Cherty” stringers in the Barnett Shale are agglutinated foraminifera. Sediment Geol, 2007, 198: 221—232
[25]
35 Schieber J. Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas. Palaeogeogr Palaeocl Palaeoecol, 2009, 271: 292—300
[26]
36 Miller W III. Giant bathysiphon (Foraminiferida) from Cretaceous turbidites, Northern California. Lethaia, 1988, 21: 363—374
[27]
37 Streng M, Babcock L E, Hollingsworth J S. Agglutinated protists from the Lower Cambrian Nevada. J Paleontol, 2005, 79: 1214—1218
[28]
38 Hansen H J. Test structure and evolution in the Foraminifera. Lethaia, 1977, 122: 173—182
[29]
39 Pawlowski J, Holzmann M, Berney C. The evolution of early Foraminifera. Proc Natl Acad Sci USA, 2003, 100: 11494—11498
[30]
40 Langer M R. Origin of foraminifera: Conflicting molecular and paleontological data? Mar Micropaleontol, 1999, 38: 1—5
[31]
41 Flügel E. Microfacies of carbonate rocks—Analysis, Interpretation and Application. Berlin: Springer, 2004. 976
[32]
42 Marszalek D.S. Calcisphere ultrastructure and skeletal aragonite from the alga Acetabularia antillana. J Sediment Petrol, 1975, 45: 266—271
[33]
43 Samtleben C, Munnecke A, Bickert T, et al. Shell construction, assemblage and species dependent effects on the C/O-isotopic composition of brachiopods—Examples from the Silurian of Gotland. Chem Geol, 2001, 175: 61—107
[34]
44 Kazmierczak J. Volvocacean nature of some Paleozoic nonradiosphaerid calcispheres and parathuramminid “Foraminifera”. Acta Paleontol?
[35]
Pol, 1976, 10: 73—85
[36]
45 Kazmierczak J, Ittekkot V, Degens E T. Biocalcification through time: Environmental challenge and cellular response. Palaontol Zeitsch, 1985, 59: 15—33
[37]
46 Ausich W I, Bottjer D J. Sessile invertebrates. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. Oxford: Blackwell, 2001. 384—386
[38]
47 Clapham M E, Narbonne G M. Ediacaran epifaunal tiering. Geology, 2002. 30: 627—630
[39]
48 Yuan X, Xiao S X, Parsley R L, et al. Towering sponges in an Early Cambrian Lagerst?tte: Disparity between non-bilaterian and bilaterian epifaunal tiers during the Neoproterozoic-Cambrian transition. Geology, 2002, 30: 363—366
[40]
49 Clapham M E, Narbonne G M, Gehling J G. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 2003, 29: 527—544
[41]
50 Vermeij G J. Evolution and Escalation. Princeton: Princeton University Press, 1987
[42]
51 Bengtson S, Yue Z. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 1992, 257: 367—369
[43]
52 Hua H, Pratt B R, Zhang L Y. Borings in Cloudina shells: Complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 2003, 18: 454—459
[44]
53 Van Cappellen P. Biomineralization and global biogeochemical cycles. Rev Mineral Geochem, 2003, 54: 357—381
[45]
54 Westbroek P, Brown C W, Bleijswijk J V, et al. A model system approach to biological climate forcing: The example of Emiliania huxleyi. Global Planet Change, 1993, 8: 27—46
[46]
55 Bengtson S, Conway M S. Early radiation of biomineralizing phyla. In: Lipps J H, Signor P W, eds. Origin and Early Evolution of Metazoa. New York: Plenum Press, 1992. 447—481
[47]
56 Bengtson S. Mineralized skeletons and early animal evolution. In: Briggs D E G, ed. Evolving Form and Function: Fossils and Development. New Haven, CT: Yale Peabody Museum Publications, 2005. 101—124
[48]
57 Grant S W F. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am J Sci, 1990, 290-A: 261—294
[49]
58 Amthor J E, Grotzinger J P, Schr?der S, et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 2003, 31: 431—434
[50]
59 Hua H, Chen Z, Yuan X, et al. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 2005, 33: 277—280
[51]
60 Hua H, Chen Z, Yuan X. The advent of mineralized skeletons in Neoproterozoic Metazoa: New fossil evidence from the Gaojiashan Fauna. Geol J, 2007, 42: 263—279
[52]
61 Bowring S A, Grotzinger J P, Condon D J, et al. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am J Sci, 2007, 307: 1097—1145
[53]
62 Francis A M, Cohen P A, Dudás F ?, et al. Early Neoproterozoic scale microfossils in the Lower Tindir Group of Alaska and the Yukon Territory. Geology, 2010, 38: 143—146
[54]
1 Gaucher C, Sprechermann P. Upper Vendian skeletal fauna of the Arroyo del Sodado Group, Uruguay. Beringeria, 1999, 23: 55—91
[55]
2 Culver S J. Early Cambrian foraminifera from West Africa. Science, 1991, 254: 689—691
[56]
3 McIlroy D, Green O R, Brasier M D. Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia, 2001, 34: 13—29
[57]
4 Lipps J H, Rozanov A Y. The Late Precambrian-Cambrian agglutinated fossil Platysolenites. Palaeontol J, 1996, 10: 687—697
[58]
5 Knoll A H, Vidal G. Late Proterozoic vase-shaped microfossils from the Visings? Beds, Sweden. Geol F?reningen Stockholm F?rhandl, 1980, 102: 207—211
[59]
7 Bloeser B, Schopf J W, Horodyski R J, et al. Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona. Science, 1977, 195: 676—679
[60]
8 Bloeser B. Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. J Paleontol, 1985, 59: 741—765
[61]
9 Horodyski R J. A new occurrence of the vase-shaped fossil Melanocyrillium and new data on this relatively complex Late Precambrian
10 Horodyski R J. Paleontology of Proterozoic shales and mudstones: Examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA. In: Nagy B, Leventhal J S, Grant R F, eds. Metalliferous Black Shales and Related Ore Deposits. Precambrian Res, 1993, 61: 241—278
[64]
11 Knoll A H, Calder S. Microbiotas of the late Precambrian Ryss? Formation, Nordaustlandet, Svalbard. Palaeontology, 1983, 26: 467—496