145 Huang X L, Xu Y G, Liu D Y. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochim Cosmochim Acta, 2004, 68: 127-149??
[4]
146 Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett, 1983, 64: 295-304??
[5]
147 Miller C F, McDowell S M, Mapes R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 2003, 31: 529-532??
[6]
148 Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 2005, 308: 841-844??
[7]
149 Green T H, Pearson N J. Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T. Chem Geol, 1986, 54: 185-201??
[8]
150 Ryerson F J, Watson E B. Rutile saturation in magmas: Implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet Sci Lett, 1987, 86: 225-239??
[9]
12 Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 2008, 270: 41-53??
14 Wu F Y, Walker R J, Ren X W, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol, 2003, 196: 107-129??
[12]
15 Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 2006, 70: 5013-5034??
17 Liu Y S, Gao S, Kelemen P B, et al. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta, 2008, 72: 2349-2376??
[15]
18 Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30: 1111-1114
[16]
19 Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34: 721-724??
[17]
20 Xu Y G, Menzies M A, Vroon P, et al. Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. J Petrol, 1998, 39: 469-493??
[18]
21 Xu Y G. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth, 2001, 26: 741-757
[19]
22 Xu Y G, Menzies M A, Thirlwall M F, et al. “Reactive” harzburgites from Huinan, NE China: Products of lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta, 2003, 67: 487-505
[20]
25 Zheng J P, O’Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China Block: Significance for lithosphere evolution. Lithos, 2001, 57: 43-66??
28 Zheng J P, Griffin W L, O’Reilly S Y, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 2007, 71: 5203-5225??
45 Xiong X L. Trace element evidence for the growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 2006, 34: 945-948??
[26]
46 Xiong X L, Keppler H, Audétat A, et al. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. Amer Mineral, 2009, 94: 1175-1186??
[27]
47 Nair R, Chacko T. Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology, 2008, 36: 583-586??
[28]
48 Zhai M G, Fan Q C, Zhang H F, et al. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination. Lithos, 2007, 96: 36-54??
50 Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol, 2005, 221: 127-156??
54 Wang Q, Xu J F, Zhao Z H, et al. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochem J, 2004, 38: 417-434
[35]
55 Wang Q, Zhao Z H, Bao Z W, et al. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper-molybdenum mineralization in southeast Hubei, east China. Resourc Geol, 2004, 54: 137-152??
[36]
56 Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, dexing, South China: Implications for the genesis of porphyry copper mineralization. J Petrol, 2006, 47: 119-144
[37]
57 Wang Q, Wyman D A, Xu J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 2006, 89: 424-446??
[38]
58 Wang Q, Wyman D A, Xu J F, et al. Partial melting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu-Au mineralization. J Geol, 2007, 115: 149-161??
[39]
59 Wang Q, Wyman D A, Xu J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 2007, 71: 2609-2636??
64 Chen B, Jahn B M, Arakawa Y, et al. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton: Elemental and Sr-Nd-Pb isotopic constraints. Contrib Mineral Petrol, 2004, 148: 489-501??
67 Xu W L, Wang Q H, Wang D Y, et al. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust. J Asian Earth Sci, 2006, 27: 230-240??
[48]
68 Guo F, Fan W M, Li C W. Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: Magma genesis and implications for crustal recycling beneath continental collisional orogens. Geol Mag, 2006, 143: 1-13
[49]
69 Hou M L, Jiang Y H, Jiang S Y, et al. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China: Implications for crustal thickening to delamination. Geol Mag, 2007, 144: 619-631??
71 Jiang N, Liu Y S, Zhou W G, et al. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China Craton. Geochim Cosmochim Acta, 2007, 71: 2591-2608??
[52]
72 Yang W, Li S G. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos, 2008, 102: 88-117??
[53]
73 Huang F, Li S G, Dong F, et al. High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust. Chem Geol, 2008, 255: 1-13??
[54]
74 Liu S, Hu R Z, Gao S, et al. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong Province, Eastern China: Constraints on petrogenesis and implications. J Asian Earth Sci, 2009, 35: 445-458??
93 Ling M X, Wang F Y, Ding X, et al. Cretaceous ridge subduction along the lower Yangtze river belt, eastern China. Econ Geol, 2009, 104: 303-321??
[60]
94 Xiong X L, Xia B, Xu J F, et al. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle. Chem Geol, 2006, 229: 273-292??
[61]
95 Douce A E P. Vapor-absent melting of tonalite at 15-32 kbar. J Petrol, 2005, 46: 275-290
[62]
96 Singh J, Johannes W. Dehydration melting of tonalites. Part II. Composition of melts and solids. Contrib Mineral Petrol, 1996, 125: 26-44??
[63]
97 Singh J, Johannes W. Dehydration melting of tonalites. Part I. Beginning of melting. Contrib Mineral Petrol, 1996, 125: 16-25??
[64]
98 Skjerlie K P, Johnston A D. Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: Implications for the generation of anorogenic granites. J Petrol, 1993, 34: 785-815
[65]
99 Skjerlie K P, Johnston A D. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology, 1992, 20: 263-266??
[66]
100 Watkins J, Clemens J, Treloar P. Archaean TTGs as sources of younger granitic magmas: Melting of sodic metatonalites at 0.6-1.2 GPa. Contrib Mineral Petrol, 2007, 154: 91-110
[67]
101 Gardien V, Thompson A B, Ulmer P. Melting of biotite + plagioclase+ quartz gneisses: The role of H2O in the stability of amphibole. J Petrol, 2000, 41: 651-666??
[68]
102 Douce A E P, Beard J S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol, 1995, 36: 707-738
[69]
103 Castro A, Corretge L G, El-Biad M, et al. Experimental constraints on hercynian anatexis in the Iberian Massif, Spain. J Petrol, 2000, 41: 1471-1488
[70]
104 Vielzeuf D, Montel J M. Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol, 1994, 117: 375-393??
[71]
105 Montel J M, Vielzeuf D. Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib Mineral Petrol, 1997, 128: 176-196??
[72]
106 Douce A E P, Beard J S. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. J Petrol, 1996, 37: 999-1024
[73]
107 Casco A G, Haissen F, Castro A, et al. Synthesis of staurolite in melting experiments of a natural metapelite: Consequences for the phase relations in low-temperature pelitic migmatites. J Petrol, 2003, 44: 1727-1757??
[74]
108 Hermann J, Spandler C J. Sediment melts at sub-arc depths: An experimental study. J Petrol, 2008, 49: 717-740
[75]
109 Skjerlie K P, Johnston A D. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J Petrol, 1996, 37: 661-691??
[76]
110 Liu J, Bohlen S R, Ernst W G. Stability of hydrous phases in subducting oceanic crust. Earth Planet Sci Lett, 1996, 143: 161-171??
[77]
111 Winther K T, Newton R C. Experimental melting of hydrous low-K tholeiite: Evidence on the origin of Archaean cratons. Bull Geol Soc Denmark, 1991, 39: 213-228
[78]
112 Winther K T. An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem Geol, 1996, 127: 43-59??
[79]
113 Rushmer T. Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol, 1991, 107: 41-59??
[80]
114 Rushmer T. Experimental high-pressure granulites: Some applications to natural mafic xenolith suites and Archean granulite terranes. Geology, 1993, 21: 411-414??
[81]
115 Wolf M B, Wyllie P J. Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time. Contrib Mineral Petrol, 1994,115: 369-383??
[82]
116 Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 1995, 36: 891-931
[83]
117 Springer W, Seck H A. Partial fusion of basic granulites at 5 to 15 kbar: Implications for the origin of TTG magmas. Contrib Mineral Petrol, 1997, 127: 30-45??
[84]
118 Lopez S, Castro A. Determination of the fluid-absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4-14 kbar. Am Miner, 2001, 86: 1396-1403
[85]
151 Clemens J D. Water contents of intermediate to silicic magmas. Lithos, 1984, 17: 273-287??
[86]
152 Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347: 662-665??
[87]
153 Prowatke S, Klemme S. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim Cosmochim Acta, 2005, 69: 695-709??
[88]
154 Klemme S, Günther D, Hametner K, et al. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol, 2006, 234: 251-263??
2 Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotect Metall, 1992, 16: 171-180
[91]
3 Fan W M, Zhang H F, Baker J, et al. On and off the North China Craton: Where is the Archean keel? J Petrol, 2000, 41: 933-950
[92]
4 Griffin W L, O’Reilly S Y, Ryan C G. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: Proton microprobe studies. In: Abstract of International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and Its Environs, Beijing, 1992. 65-66
[93]
5 Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean Craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonics. Geol Soc Spec Pub, 1993, 76: 71-78??
8 Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta, 1998, 62: 1959-1975??
[97]
9 Gao S, Zhang B R, Jin Z M, et al. How mafic is the lower continental crust? Earth Planet Sci Lett, 1998, 16: 101-117
[98]
10 Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 2002, 198: 307-322??
[99]
11 Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton. Nature, 2004, 432: 892-897??
31 Xu X S, Griffin W L, O’Reilly S Y, et al. Re-Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle. Lithos, 2008, 102: 43-64??
[104]
32 Zhang J J, Zheng Y F, Zhao Z F. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 2009, 110: 305-326??
37 Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major, trace element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 2002, 144: 241-253??
[110]
38 Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean Craton. Earth Planet Sci Lett, 2005, 237: 768-780??
[111]
39 Zhang H F, Goldstein S, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 2008, 155: 271-293??
42 Liu Y S, Gao S, Jin S Y, et al. Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China Craton: Implications for petrogenesis and lower crustal composition. Geochim Cosmochim Acta, 2001, 65: 2589-2604??
[115]
43 Zheng J P, Sun M, Lu F X, et al. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korea. Tectonophysics, 2003, 361: 37-60 ??
[116]
44 Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 2005, 218: 339-359??
83 Zhao Z F, Zheng Y F, Wei C S, et al. Post-collisional granitoids from the Dabie Orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 2007, 93: 248-272??
[122]
84 Xiao L, Clemens J D. Origin of potassic (C-type) adakite magmas: Experimental and field constraints. Lithos, 2007, 95: 399-414??
[123]
85 Xu H J, Ma C Q, Ye K. Early cretaceous granitoids and their implications for the collapse of the Dabie Orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chem Geol, 2007, 240: 238-259??
89 Guo F, Nakamuru E, Fan W M, et al. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China. J Petrol, 2007, 48: 661-692??
[128]
90 Guo F, Fan W M, Wang Y J, et al. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: Implications for enrichment processes beneath continental collisional belt. Lithos, 2004, 78: 291-305??
[129]
91 Castillo P R. An overview of adakite petrogenesis. Chin Sci Bull, 2006, 51: 257-268??
[130]
92 Yang J H, Wu F Y, Wilde A S, et al. Mesozoic decratonization of the North China Block. Geology, 2008, 36: 467-470??
[131]
119 Skjerlie K P. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 10 to 32 Gpa: Implications for melting in thickened continental crust and for subduction-zone processes. J Petrol, 2002, 43: 291-314??
[132]
120 Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contrib Mineral Petrol, 1994, 117: 394-409
129 Kogiso T, Hirschmann M M. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett, 2006, 249: 188-199??
[142]
130 Pertermann M, Hirschmann M M. Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa. J Petrol, 2003, 44: 2173-2201
[143]
131 Spandler C, Yaxley G, Green D H, et al. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600℃ and 3 to 5 GPa. J Petrol, 2008, 49: 771-795
133 Lambert I B, Wyllie P J. Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications. J Geol, 1972, 80: 693-708??
[146]
134 Green T H. Anatexis of mafic crust and high pressure crystallization of andesite. In: Thorpe R S, ed. Andesites. New York: John Wiley, 1982. 465-487
[147]
135 Ernst W G, Liu J. Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB-A semiquantitative thermobarometer. Am Miner, 1998, 83: 952-969
[148]
136 Prouteau G, Scaillet B, Pichavant M, et al. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 2001, 410: 197-200??
[149]
137 Schmidt M W, Vielzeuf D, Auzanneau E. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet Sci Lett, 2004, 228: 65-84??
[150]
138 Forneris J F, Holloway J R. Phase equilibria in subducting basaltic crust: Implications for H2O release from the slab. Earth Planet Sci Lett, 2003, 214: 187-201??
[151]
139 Kessel R, Ulmer P, Pettke T, et al. The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400℃. Earth Planet Sci Lett, 2005, 237: 873-892??
[152]
140 Klimm K, Blundy J D, Green T H. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol, 2008, 49: 523-553??
[153]
141 Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 1998, 163: 361-379??