全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

岫岩陨石坑的成坑过程与形貌特征研究

, PP. 1488-1497

Keywords: 岫岩陨石坑,撞击成坑,陨石直径,坑缘,裂隙

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用陨石撞击形态学理论与撞击推演模型,基于遥感影像、数字高程模型,钻孔资料,区域地质图与野外观测等多元数据,对岫岩陨石坑的撞击形成过程与形貌特征等进行了研究.模拟计算表明,岫岩陨石坑撞击成坑瞬时直径为(1406±12)m,瞬时坑深为(497±4)m:撞击完成后最终坑的直径约为(1758±15)m,坑深为(374.5±3.5)m,角砾岩堆积透镜体厚度为(188.5±0.5)m,与前人钻孔揭示的数据基本一致.初步估算出形成岫岩陨石坑的陨石直径:若为铁陨石,直径为55m左右:若为石陨石,直径为115m左右.基于数字高程模型数据揭示了岫岩陨石坑的侵蚀与退化特征:坑深/坑径的比值为0.143,与Meteor撞击坑的特征值相似,从而定量地刻画了该坑属于简单坑的特征:坑缘轮廓的圆度值为0.884,表明该坑已受到了一定程度的风化与侵蚀作用.高分辨率SPOT彩色影像解译得到岫岩陨石坑坑内裂隙分布特征,放射状裂隙在NW-SE和WNW-ESE方位上表现出优选性,裂隙控制坑内水系的发育与演化.

References

[1]  陈鸣. 2007. 岫岩陨石坑: 撞击起源的证据. 科学通报, 52: 2777-2780
[2]  陈鸣, 肖万生, 谢先德, 等. 2009. 岫岩陨石撞击坑的证实. 科学通报, 54: 3507-3511
[3]  陈鸣. 2011. 岫岩陨石坑石英的冲击变质特征. 矿物学报, 2: 161-165
[4]  Collins G S, Melosh H J, Marcua R A. 2005. Earth impact effects program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit Planet Sci, 40: 817-840
[5]  Covey C, Ghan S J, Walton J J, et al. 1990. Global environmental effects of impact-generated aerosols: Results from a general circulation model. In: Sharpton V S, Ward P D, eds. Global Catastrophes in Earth History. Boulder: Geological Society of America. 263-270
[6]  Dence M R, Grieve R A F, Robertson P B. 1977. Terrestrial impact structures: Principal characteristics and energy considerations. In: Roddy D J, Pepin R O, Merrill R B, eds. Impact and Explosion Cratering. New York: Pergamon. 247-275
[7]  French B M. 1998. Traces of Catastrophe: A Handbook of Shock-metamorphic Effects in Terrestrial Meteorites Impact Structure. Houston: Lunar and Planetary Institute. 23-29
[8]  Gault D E, Quaide W L, Oberbeck V R. 1968. Impact cratering mechanisms and structures, In: French B M, Short N M, eds. Shock Metamorphism of Natural Materials. Baltimore: Mono Book Corporation. 87-100
[9]  Gault D E. 1970. Impact cratering. In: Greeley R, Schultz P H, eds. A Primer in Lunar Geology. California: NASA Ames, Moffett Field. 137-175
[10]  Grant J A. 1999. Evaluating the evolution of process specific degradation signatures around impact craters. Int J Impact Eng, 23: 331-340
[11]  Grieve R A. 1980. Impact bombardment and its role in proto-continental growth on the early earth. Precambrian Res, 10: 217-247
[12]  Grieve R A, Shoemaker E M. 1994. The record of past impacts on Earth. In: Gehrels T, ed. Hazards Due to Comets and Asteroids. Tucson: University of Arizona Press. 417-462
[13]  Hilton J L. 2002. Asteroid masses and densities. In:Bottke W F J, Cellino A, Paolicchi P, et al., ed. Asteroids III. Tucson: University of Arizona Press. 103-112
[14]  Kumar P S. 2005. Structural effects of meteorite impact on basalt: Evidence from Lonar Crater, India. J Geophys Res, 110: 1-10
[15]  Kumar P S, Kring D A. 2008. Impact fracturing and structural modification of sedimentary rocks at Meteor Crater, Arizona. J Geophys Res, 113: 1-17
[16]  Kring D A. 2000. Impact events and their effect on the origin, evolution, and distribution of life. GSA Today, 10: 1-7
[17]  Kring D A. 2007. Guidebook to the Geology of Barringer Meteorite Crater, Arizona. LPI Contribution No. 1355
[18]  陈鸣, 肖万生, 谢先德, 等. 2012. 岫岩陨石坑撞击成因的矿物学证据. 矿物学报, S1: 51
[19]  樊计昌, 刘明军, 赵成彬, 等. 2010. 岫岩陨石坑三维Q值层析成像. 地球物理学报, 10: 2367-2375
[20]  方建军, 王建强, 邱欣卫, 等. 2008. 陨星撞击的地学意义与撞击构造的判识标志.地球科学与环境学报, 30: 234-239
[21]  林文祝. 1998. 应用地球物理方法研究撞击坑. 地质地球化学, 1: 63-68
[22]  欧阳自远. 1997. 小天体撞击与古环境灾变: 新生代六次撞击事件的研究. 武汉: 湖北科学技术出版社. 15-21
[23]  覃功炯, 卢登蓉, 欧强, 等. 2001. 罗圈里撞击坑铂族元素异常及粗铂矿的发现及其意义. 地学前缘, 8: 333-338
[24]  王杰, 曾佐勋, 岳宗玉, 等. 2011. 月球主要构造特征: 嫦娥一号月球影像初步研究. 空间科学学报, 31: 482-491
[25]  王心源, 吉玮, 李超, 等. 2012. 基于“嫦娥一号”数据的月表撞击坑特征的多参数统计分析. 地理研究, 31: 369-376
[26]  尹锋, 陈鸣. 2012. 岫岩陨石坑菱铁矿角砾岩的特征及成因. 地球化学, 6: 538-544
[27]  赵成彬, 刘明军, 樊计昌, 等. 2011. 岫岩陨石撞击坑结构高精度地震探测研究. 地球物理学报, 6: 1559-1565
[28]  赵树明. 2004. 在辽东半岛中部岫岩满族自治区内发现一撞击构造——陨石坑. 国土资源遥感, 3: 27
[29]  Adler J E M, Salisbury J W. 1969. Circularity of lunar craters. Icarus, 10: 37-52
[30]  Bottke W F J, Nolan M C, Greenberg R, et al. 1994. Collisional lifetimes and impact statistics of near-Earth asteroids. In: Gehrels T, ed. Hazards Due to Comets and Asteroids. Tucson: University of Arizona Press. 337-357
[31]  Melosh H J. 1989. Impact Cratering. New York: Oxford University Press. 245
[32]  McGetchin T R, Settle M, Head J W. 1973. Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth Planet Sci Lett, 20: 226-236
[33]  Pike R J. 1980. Control of crater morphology by gravity and target type: Mars, Earth, Moon. 11th Lunar and Planetary Science Conference. 3: 2159-2189
[34]  Roddy D J. 1978. Pre-impact geologic conditions, physical properties, energy calculations, meteorite and initial crater dimensions and orientations of joints, faults, and walls at Meteor crater, Arizona. 9th Lunar Planetary Science Conference. 3891-3930
[35]  Schultz P H. 1992. Atmospheric effects on ejecta emplacement. J Geophys Res, 97: 623-662
[36]  Shoemaker E M. 1962. Interpretation of lunar craters. In: Kopal Z, ed. Physics and Astronomy of the Moon. New York: Academic Press. 283-359
[37]  Shoemaker E M, Kieffer S W. 1974. Guidebook to the geology of Meteor crater, Arizona. Arizona: Arizona State University Press. 17-66
[38]  Toon O B, Zahnle K, Morrison D, et al. 1997. Environmental perturbations caused by the impacts of asteroids and comets. Rev Geophys, 35: 41-78

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133