全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华南中二叠统栖霞组海相烃源岩形成的地球生物学过程

, PP. 1185-1192

Keywords: 栖霞组,烃源岩,生产力,古氧相,地球生物学华南

Full-Text   Cite this paper   Add to My Lib

Abstract:

?华南中二叠统栖霞组海相烃源岩是中国南方四套区域性烃源岩的重要组成部分,对其形成机制的研究具有重要的科学和经济意义.前人的研究成果表明中二叠世栖霞期具有较高的初级生产力和相对缺氧的环境,但是对于高生产力和缺氧环境的形成机制一直存有争议.本文利用地球生物学正演评价的思路,整合研究程度相对较高的四川广元上寺剖面的研究成果,对华南栖霞组海相烃源岩的形成过程进行了阐述.利用现实主义原理,恢复了栖霞期的古洋流格局,认为较高的生产力是海平面上升诱发的赤道上升流的结果,其营养元素来自沿赤道自西向东的赤道潜流.高生产力输出大量有机质而消耗水体中的可溶氧,形成栖霞组独特的古氧相特征.在水体较深的生境型中,有机质经过厌氧氧化作用而被保存,成为栖霞组海相烃源岩的物质基础.地球生物学为研究栖霞组海相烃源岩的形成机制提供了新的思路.

References

[1]  韦恒叶, 陈代钊, 遇昊, 等. 2011. 鄂西地区中二叠统栖霞组下部烃源岩形成机理. 地质科学, 46: 68-82
[2]  韦恒叶, 汪建国, 遇昊, 等. 2013. 海平面变化在湖南西部桑植地区栖霞组富有机碳沉积物形成中的作用. 地球科学——中国地质大学学报, 38: 266-276
[3]  谢树成, 杨欢, 罗根明, 等. 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57: 3-22
[4]  谢树成, 殷鸿福, 解习农, 等. 2007. 地球生物学方法与海相优质烃源岩形成过程的正演和评价. 地球科学——中国地质大学学报, 32: 727-740
[5]  颜佳新, 刘新宇. 2007. 从地球生物学角度讨论华南中二叠世海相烃源岩缺氧沉积环境成因模式. 地球科学——中国地质大学学报, 32: 789-796
[6]  颜佳新, 张海清. 1996. 古氧相——一个新的沉积学研究领域. 地质科技情报, 15: 7-13
[7]  曹婷婷, 徐思煌, 王约, 等. 2011. 四川盆地南江杨坝地区下寒武统烃源岩形成的地球生物学条件. 石油与天然气地质, 32: 11-16
[8]  陈慧, 解习农, 李红敬, 等. 2010. 利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩. 古地理学报, 12: 324-333
[9]  陈建平, 梁狄刚, 张水昌, 等. 2012. 中国古生界海相烃源岩生烃潜力评价标准与方法. 地质学报, 86: 1132-1142
[10]  冯增昭, 杨玉卿. 1996. 中国南方二叠纪岩相古地理. 沉积学报, 14: 1-11
[11]  胡超涌, 潘涵香, 马仲武, 等. 2007. 海相碳酸盐岩中的铁: 烃源岩古生产力评估的新指标. 地球科学——中国地质大学学报, 32: 755-758
[12]  贾建忠, 万晓樵, 张翼翼, 等. 2009. 白垩纪中期海相富有机碳沉积的地球生物学背景. 地学前缘, 16: 143-152
[13]  李波, 颜佳新, 薛武强, 等. 2012. 四川广元地区中二叠世斑状白云岩成因及地质意义. 地球科学——中国地质大学学报, 37: 136-146
[14]  李朋威, 吴夏, 白晓, 等. 2010. 四川广元上寺剖面二叠系栖霞组沉积碳库与有机碳埋藏. 古地理学报, 12: 301-306
[15]  刘峰, 蔡进功, 吕炳全, 等. 2011. 巢湖地区栖霞组碳酸盐烃源岩的形成及影响因素. 中国科学: 地球科学, 41: 873-886
[16]  刘喜停, 颜佳新, 薛武强. 2012. 灰岩-泥灰岩韵律层的差异成岩作用. 地质论评, 58: 627-635
[17]  吕炳全, 蔡进功, 刘峰, 等. 2010. 栖霞组中台缘斜坡上升流沉积相及其与烃源岩的关系. 海洋地质与第四纪地质, 30: 109-118
[18]  马志鑫, 李波, 颜佳新, 等. 2011. 四川广元中二叠统栖霞组似球粒灰岩微相特征及沉积学意义. 沉积学报, 29: 449-457
[19]  郄文昆, 张雄华, 蔡雄飞, 等. 2007. 华南地区石炭纪-早二叠世早期成冰期的地球生物学过程与烃源岩的形成. 地球科学——中国地质大学学报, 32: 803-810
[20]  腾格尔, 刘文汇, 徐永昌, 等. 2006. 高演化海相碳酸盐烃源岩地球化学综合判识——以鄂尔多斯盆地为例. 中国科学D辑: 地球科学, 36: 167-176
[21]  颜佳新, 赵坤. 2002. 二叠-三叠纪东特提斯地区古地理、古气候和古海洋演化与地球表层多圈层事件耦合. 中国科学D辑: 地球科学, 32: 751-759
[22]  颜佳新. 2004. 华南地区二叠纪栖霞组碳酸盐岩成因研究及其地质意义. 沉积学报, 22: 579-587
[23]  殷鸿福, 谢树成, 秦建中, 等. 2008. 对地球生物学, 生物地质学和地球生物相的一些探讨. 中国科学D辑: 地球科学, 38: 1473-1480
[24]  殷鸿福, 谢树成, 颜佳新, 等. 2011. 海相碳酸盐烃源岩评价的地球生物学方法. 中国科学: 地球科学, 41: 895-909
[25]  周炼, 苏洁, 黄俊华, 等. 2011. 判识缺氧事件的地球化学新标志——钼同位素. 中国科学: 地球科学, 41: 309-319
[26]  Algeo T J, Lyons T W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21, doi 10.1029/2004pa001112
[27]  Algeo T J, Maynard J B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 206: 289-318
[28]  Caplan M L, Marc Bustin R. 2001. Palaeoenvironmental and palaeoceanographic controls on black, laminated mudrock deposition: Example from Devonian-Carboniferous strata, Alberta, Canada. Sediment Geol, 145: 45-72
[29]  Capozzi R, Dinelli E, Negri A, et al. 2006. Productivity-generated annual laminae in Mid-Pliocene sapropels deposited during precessionally forced periods of warmer Mediterranean climate. Paleogeogr Paleoclimatol Paleoecol, 235: 208-222
[30]  Dymond J, Suess E, Lyle M. 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163-181
[31]  Franois R, Altabet M A, Yu E-F, et al. 1997. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature, 389: 929-935
[32]  Griffith E M, Paytan A. 2012. Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications. Sedimentology, 59: 1817-1835
[33]  Kodrans-Nsiah M, M?rz C, Harding I C, et al. 2009. Are the Kimmeridge Clay deposits affected by “burn-down” events? Palynological and geochemical studies on a 1 metre long section from the Upper Kimmeridge Clay Formation (Dorset, UK). Sediment Geol, 222: 301-313
[34]  Kuypers M M M, Pancost R D, Nijenhuis I A, et al. 2002. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 17, doi 10.1029/2000pa000569
[35]  Lallier-Vergès E, Hayes J M, Boussafir M, et al. 1997. Productivity-induced sulphur enrichment of hydrocarbon-rich sediments from the Kimmeridge Clay Formation. Chem Geol, 134: 277-288
[36]  Ma Z W, Hu C Y, Yan J X, et al. 2008a. Biogeochemical records at Shangsi section, northeast Sichuan in China: The Permian paleoproductivity proxies. J Earth Sci, 19: 461-470
[37]  Ma Z X, Yan J X, Xie X N, et al. 2008b. Depositional and ecological features of Permian oxygen deficient deposits at Shangsi section, northeast Sichuan, China. J Earth Sci, 19: 488-495
[38]  McManus J, Berelson W M, Klinkhammer G P, et al. 1998. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochim Cosmochim Acta, 62: 3453-3473
[39]  Murray R, Leinen M. 1996. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean. Geochim Cosmochim Acta, 60: 3869-3878
[40]  Pedersen T F, Calvert S E. 1990. Anoxia vs productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bull, 74: 454-466
[41]  Piper D Z, Link P K. 2002. An upwelling model for the Phosphoria sea: A Permian, ocean-margin sea in the northwest United States. AAPG Bull, 86: 1217-1235
[42]  Piper D Z. 2001. Marine chemistry of the Permian Phosphoria Formation and basin, southeast Idaho. Econ Geol, 96: 599-620
[43]  Radic A, Lacan F, Murray J W. 2011. Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth Planet Sci Lett, 306: 1-10
[44]  Rees P M A, Ziegler A M, Gibbs M T, et al. 2002. Permian phytogeographic patterns and climate data/model comparisons. J Geol, 110: 1-31
[45]  Schulte S, Bard E. 2003. Past changes in biologically mediated dissolution of calcite above the chemical lysocline recorded in Indian Ocean sediments. Quat Sci Rev, 22: 1757-1770
[46]  Schulte S, Rostek F, Bard E, et al. 1999. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea. Earth Planet Sci Lett, 173: 205-221
[47]  Slemons L O, Murray J W, Resing J, et al. 2010. Western Pacific coastal sources of iron, manganese, and aluminum to the Equatorial Undercurrent. Glob Biogeochem Cycle, 24, doi 10.1029/2009gb003693
[48]  Wei H Y, Chen D Z, Wang J G, et al. 2012. Organic accumulation in the lower Chihsia Formation(Middle Permian)of South China: Constraints from pyrite morphology and multiple geochemical proxies. Paleogeogr Paleoclimatol Paleoecol, 353-355: 73-86
[49]  Winguth A M E, Heinze C, Kutzbach J E, et al. 2002. Simulated warm polar currents during the middle Permian. Paleoceanography, 17, doi 10.1029/2001pa000646
[50]  Xie X N, Li H J, Xiong X, et al. 2008. Main controlling factors of organic matter richness in a Permian section of Guangyuan, northeast Sichuan. J Earth Sci, 19: 507-517

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133