Algeo T J, Lyons T W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21, doi 10.1029/2004pa001112
[27]
Algeo T J, Maynard J B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 206: 289-318
[28]
Caplan M L, Marc Bustin R. 2001. Palaeoenvironmental and palaeoceanographic controls on black, laminated mudrock deposition: Example from Devonian-Carboniferous strata, Alberta, Canada. Sediment Geol, 145: 45-72
[29]
Capozzi R, Dinelli E, Negri A, et al. 2006. Productivity-generated annual laminae in Mid-Pliocene sapropels deposited during precessionally forced periods of warmer Mediterranean climate. Paleogeogr Paleoclimatol Paleoecol, 235: 208-222
[30]
Dymond J, Suess E, Lyle M. 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163-181
[31]
Franois R, Altabet M A, Yu E-F, et al. 1997. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature, 389: 929-935
[32]
Griffith E M, Paytan A. 2012. Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications. Sedimentology, 59: 1817-1835
[33]
Kodrans-Nsiah M, M?rz C, Harding I C, et al. 2009. Are the Kimmeridge Clay deposits affected by “burn-down” events? Palynological and geochemical studies on a 1 metre long section from the Upper Kimmeridge Clay Formation (Dorset, UK). Sediment Geol, 222: 301-313
[34]
Kuypers M M M, Pancost R D, Nijenhuis I A, et al. 2002. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 17, doi 10.1029/2000pa000569
[35]
Lallier-Vergès E, Hayes J M, Boussafir M, et al. 1997. Productivity-induced sulphur enrichment of hydrocarbon-rich sediments from the Kimmeridge Clay Formation. Chem Geol, 134: 277-288
[36]
Ma Z W, Hu C Y, Yan J X, et al. 2008a. Biogeochemical records at Shangsi section, northeast Sichuan in China: The Permian paleoproductivity proxies. J Earth Sci, 19: 461-470
[37]
Ma Z X, Yan J X, Xie X N, et al. 2008b. Depositional and ecological features of Permian oxygen deficient deposits at Shangsi section, northeast Sichuan, China. J Earth Sci, 19: 488-495
[38]
McManus J, Berelson W M, Klinkhammer G P, et al. 1998. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochim Cosmochim Acta, 62: 3453-3473
[39]
Murray R, Leinen M. 1996. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean. Geochim Cosmochim Acta, 60: 3869-3878
[40]
Pedersen T F, Calvert S E. 1990. Anoxia vs productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bull, 74: 454-466
[41]
Piper D Z, Link P K. 2002. An upwelling model for the Phosphoria sea: A Permian, ocean-margin sea in the northwest United States. AAPG Bull, 86: 1217-1235
[42]
Piper D Z. 2001. Marine chemistry of the Permian Phosphoria Formation and basin, southeast Idaho. Econ Geol, 96: 599-620
[43]
Radic A, Lacan F, Murray J W. 2011. Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth Planet Sci Lett, 306: 1-10
[44]
Rees P M A, Ziegler A M, Gibbs M T, et al. 2002. Permian phytogeographic patterns and climate data/model comparisons. J Geol, 110: 1-31
[45]
Schulte S, Bard E. 2003. Past changes in biologically mediated dissolution of calcite above the chemical lysocline recorded in Indian Ocean sediments. Quat Sci Rev, 22: 1757-1770
[46]
Schulte S, Rostek F, Bard E, et al. 1999. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea. Earth Planet Sci Lett, 173: 205-221
[47]
Slemons L O, Murray J W, Resing J, et al. 2010. Western Pacific coastal sources of iron, manganese, and aluminum to the Equatorial Undercurrent. Glob Biogeochem Cycle, 24, doi 10.1029/2009gb003693
[48]
Wei H Y, Chen D Z, Wang J G, et al. 2012. Organic accumulation in the lower Chihsia Formation(Middle Permian)of South China: Constraints from pyrite morphology and multiple geochemical proxies. Paleogeogr Paleoclimatol Paleoecol, 353-355: 73-86
[49]
Winguth A M E, Heinze C, Kutzbach J E, et al. 2002. Simulated warm polar currents during the middle Permian. Paleoceanography, 17, doi 10.1029/2001pa000646
[50]
Xie X N, Li H J, Xiong X, et al. 2008. Main controlling factors of organic matter richness in a Permian section of Guangyuan, northeast Sichuan. J Earth Sci, 19: 507-517