全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同垂向分布特征的垂直黏性系数对经典定常Ekman螺旋结构的影响

, PP. 367-376

Keywords: Ekman螺旋结构,垂直黏性系数分布,表面流偏角,数值实验

Full-Text   Cite this paper   Add to My Lib

Abstract:

?经典定常Ekman螺旋结构的表面漂流应该在南北半球分别沿风向右偏和左偏45°,而已有观测和研究结果表明:在北极和高纬度海域,表面流相对海面风向的偏角小于45°;在大洋低纬度海域,该偏角大于45°.针对该现象,本文设计了理想化数值实验,研究了不同垂向分布特征的垂直黏性系数对经典定常Ekman螺旋结构的影响,结果显示:垂直黏性系数的垂向分布特征对Ekman螺旋结构影响显著,当垂直黏性系数随深度增加而减小时,表面流偏角大于45°;当垂直黏性系数随深度增加而增大时,表面流偏角小于45°;观测到的低纬度海域与极区表面流偏角的不同应该主要由海洋上层垂直黏性系数的不同垂向分布特征产生;螺旋扁平度不等于常数1,但无明显的变化规律;体积输运的大小和方向与经典Ekman理论结果一致,不受垂直黏性系数分布的影响.

References

[1]  Price J F, Sundermeyer M A. 1999. Stratified Ekman layers. J Geophys Res, 104: 20467-20494
[2]  Price J F, Weller R A, Pinkel R. 1986. Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J Geophys Res, 91: 8411-8427
[3]  Price J F, Weller R A, Schudlich R R. 1987. Wind-driven ocean currents and Ekman transport. Science, 238: 1534-1538
[4]  Qiao F L, Yuan Y L, Ezer T, et al. 2010. A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dynamics, 60: 1339-1355
[5]  Shu Q, Ma H Y, Qiao F L. 2012. Observation and simulation of a floe drift near the North Pole. Ocean Dynamics, 62: 1195-1200
[6]  Thorndike A S, Colony R. 1982. Sea ice motion in response to geostrophic winds. J Geophys Res, 87: 5845-5852
[7]  Thomas J H. 1975. A theory of steady wind-driven currents in shallow water with variable eddy viscosity. J Phys Oceanogr, 5: 136-142
[8]  叶安乐, 李凤歧. 1992. 物理海洋学. 青岛: 青岛海洋大学出版社. 684
[9]  袁业立, 李惠卿. 1993. 黄海冷水团环流结构及生成机制研究—Ⅰ.0阶解及冷水团的环流结构. 中国科学B辑, 23: 93-103
[10]  Ekman V W. 1905. On the influence of the earth''s rotation on ocean-currents. Arkiv Math Astr Ocean Phys, 2: 1-51
[11]  Fukamachi Y, Ohshima K I, Mukai Y, et al. 2011. Sea-ice drift characteristics revealed by measurement of acoustic Doppler current profiler and ice-profiling sonar off Hokkaido in the Sea of Okhotsk. Ann Glaciol, 52: 1-8
[12]  Huang C J, Qiao F L, Dai D J, et al. 2012. Field measurement of upper ocean turbulence dissipation associated with wave-turbulence interaction in the South China Sea. J Geophys Res, 117: C00J09
[13]  Huang N E. 1979. On surface drift currents in the ocean. J Fluid Mech, 91: 191-208
[14]  Huang R X. 2009. Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge: Cambridge University Press. 828
[15]  Jordan T F, Baker J R. 1980. Vertical structure of time-dependent flow dominated by friction in a well-mixed fluid. J Phys Oceanogr, 10: 1091-1103
[16]  Kimura N, Wakatsuchi M. 2000. Relationship between sea-ice motion and geostrophic wind in the northern hemisphere. Geophys Res Lett, 27: 3733-3738
[17]  Madsen O S. 1977. A realistic model of the wind-induced Ekman boundary layer. J Phys Oceanogr, 7: 248-255
[18]  McWilliams J C, Restrepo J M. 1999. The wave-driven ocean circulation. J Phys Oceanogr, 29: 2523-2540
[19]  Overland J E. 1994. Geostrophic drag coefficients for the central Arctic derived from Soviet station data. Tellus, 46A: 75-85
[20]  Polton J A, Lewis D M, Belcher S E. 2005. The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. J Phys Oceanogr, 35: 444-457

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133