全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业科学  2014 

陆地生态系统植物吸收有机氮的研究进展

DOI: 10.11829\j.issn.1001-0629.2013-0419, PP. 1357-1366

Keywords: 溶解性有机氮,氨基酸,多酚-蛋白质络合物,菌根

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在一些强烈受到氮矿化限制的地区如北极苔原、高山草甸和北方森林,很多植物可以吸收土壤中的有机氮。这种现象引起人们对建立于氮矿化基础上的陆地生态系统氮循环模式的重新思考。本文主要就植物可吸收利用土壤中有机氮的类型,菌根在植物养分获取过程中扮演的角色,以及有机氮吸收的试验设计方法等进行综述。研究发现,植物可直接吸收的土壤有机氮主要包括游离氨基酸和小分子肽。在植物从复杂氮源如蛋白质、几丁质和多酚-蛋白质络合物获取养分的过程中,菌根真菌和腐生真菌的作用不容忽视。植物吸收有机氮的试验设计可以借助同位素技术和数学模型等方法,如何使试验能够真实地反映植物在自然条件下对有机氮吸收的能力是在未来的研究中需要仔细考虑的问题。

References

[1]  Virtanen.Organic nitrogen compounds as nitrogen nutrition for higher plants.Nature,1946,10(12):515.
[2]  Schobert C,Komor E.Amino acid uptake by ricinus communis roots:Characterization and physiological significance.Plant,Cell and Environment,1987,10:493-500.
[3]  Chapin F.S,Moilanen L,Kielland K.Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge.Nature,1993,361(14):150-153.
[4]  Kielland K.Amino acid absorption by arctic plants:Implications for plant nutrition and nitrogen cycling.Ecology,1994,75(8):2373-2383.
[5]  Raab T K,Lipson D A,Monson R K.Soil amino acid utilization among species of the cyperaceae:Plant and soil processes.Ecology,1999,80(7):2408-2419.
[6]  Xu X,Ouyang H,Cao G,Pei Z,Zhou C.Uptake of organic nitrogen by eight dominant plant species in Kobresia meadows.Nutrient Cycling in Agroecosystems,2004,69:5-10.
[7]  Schimel J P,Chapin F S.Tundra plant uptake of amino acid and NH4+ nitrogen in situ:Plants complete well for amino acid N.Ecology,1996,77(7):2142-2147.
[8]  Lipson D A,Monson R K.Plant-microbe competition for soil amino acid in the alpine tundra:Effects of freeze-thaw and dry-rewet events.Oecologia,1998,113:406-414.
[9]  Miller A E,Bowman W D.Alpine plants show species-level differences in the uptake of organic and inorganic nitrogen.Plant and Soil,2003,250:283-292.
[10]  Miller A E,Bowman W D,Suding K N.Plant uptake of inorganic and organic nitrogen:Neighbor identity matters.Ecology,2007,88(7):1832-1840.
[11]  Nsholm T,Ekblab A,Nordin A,Glesler R,Hgberg M,Hgberg P.Boreal forest plants take up organic nitrogen.Nature,1998,392(30):914-916.
[12]  Nordin A,Hgberg P,Nsholm T.Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient.Oecologia,2001,129:125-132.
[13]  Northup R R,Yu Z,Dahlgren R A,Vogt K A.Polyphenol control of nitrogen release from pine litter.Nature,1995,377(21):227-229.
[14]  Streeter T C,Bol R,Bardgett R D.Amino acid as a nitrogen source in temperate upland grasslands:The use of dual labelled (13C,15N) glycine to test for direct uptake by dominant grasses.Rapid Communications in Mass Spectrometry,2000,14:1351-1355.
[15]  Weigelt A,King R,Bol R,Bardgett R D.Inter-specific variability in orgenic nitrogen uptake of three temperate grassland species.Journal of Plant Nutrition and Soil Science,2003,166:606-611.
[16]  Raab T K,Lipson D A,Monson R K.Non-mycorrhizal uptake of amino acid by roots of the alpine sedge Kobresia myosuruides:Implications for the alpine nitrogen cycle.Oecologia,1996,108(3):488-494.
[17]  Neff J C,Chapin F S,Vitousek P M.Breaks in the cycle:Dissolved orgenic nitrogen in terrestrial ecosystems.Frontiers in Ecology and The Environment,2003,1(4):205-211.
[18]  Schimel J P,Bennett J.Nitrogen mineralization:Challenges of a changing paradigm.Ecology,2004,85(3):591-602.
[19]  Lipson D A,Raab T K,Schmidt S K,Schmidt S K,Monson R K.Variation in competitive abilities of plants and microbes for specific amino acids.Biology and Fertility of Soils,1999,29:257-261.
[20]  Bennett J N,Prescott C E.Organic and inorganic nitrogen nutrition of western red cedar,western hemlock and salal in mineral N-limited cedar-hemlock forests.Oecologia,2004,141(3):468-476.
[21]  Nsholm T,Huss-Danell K,Hogberg P.Uptake of organic nitrogen in the field by four agriculturally important plant species.Ecology,2000,81(4):1155-1161.
[22]  Jones D L,Hodge A.Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability.Soil Biology and Biochemistry,1999,31:1331-1342.
[23]  Fischer W N,Andre B,Rentsch D,Krolkiewicz S,Tegeder M,Breitkreuz K,Frommer W B.Amino acid transport in plants.Trends in Plant Science,1998,3(5):188-195.
[24]  Lipson D A,Schmidt S K,Monson R K.Links between microbial population dynamics and nitrogen availability in an alpine ecosystem.Ecology,1999,80(5):1623-1631.
[25]  Jones D L,Darrah P R.Amino-acid influx at the soil-root interface of Zea mays L.and its implications in the rhizosphere.Plant and Soil,1994,163:1-12.
[26]  Reinhold L,Kaplan A.Membrane transport of sugars and amino acids.Annual Review of Plant Physiology,1984,35:45-83.
[27]  Jones D L,Darrah P R.Influx and efflux of amino acids from Zea mays L.roots and their implications for N nitrogen and the rhizosphere.Plant and Soil,1993,155-156:87-90.
[28]  Lipson D,Nsholm T.The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems.Oecologia,2001,128(3):305-316.
[29]  Heim A,Brunner I,Frey B,Frossard E,Luster J.Root exudation,organic acids,and element distribution in roots of Norway spruce seedlings treated with aluminum in hydroponics.Soil Science and Plant Nutrition,2001,164:519-526.
[30]  Farrar J,Hawes M,Jones D,Lindow S.How roots control the flux of carbon to the rhizosphere.Ecology,2003,84(4):827-837.
[31]  Nordin A,Nsholm T.Nitrogen storage forms in mine boreal understorey plant species.Oecologia,1997,110:487-492.
[32]  Lipson D A,Bowman W D,Monson R K.Luxury uptake and storage of nitrogen in the rhizomatous alpine herb.bistorta bistortoides.Ecological Society of America,1996,77(4):1277-1285.
[33]  Csonka L N,Hanson A D.Prokaryotic osmoregulation:genetics and physiology.Annual Review of Microbiology,1991,45:569-606.
[34]  Abuarghub S M,Read D J.The biology of mycorrhiza in the Ericaceae.New Phytologist,1988,108:425-431.
[35]  Kielland K.Landscape patterns of free amino acid in arctic tundra soils.Biogeochemistry,1995,31:85-98.
[36]  Abuzinadah R A,Read D J.The role of proteins in the nitrogen nutrition of ectomycorrhizal plants.IV.the utilization of peptides by Birch (Betula pendula L.) infected with different mycorrhizal fungi.New Phytologist,1989,112(1):55-60.
[37]  Chalot M,Brun A.Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas.FEMS Microbiology Reviews,1998,22:21-44.
[38]  Finlay R D,Frostegard A,Sonnerfeldt A M.Utilization of organic and inorganic notrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl.ex Loud..New Phytologist,1992,120:105-115.
[39]  Wu T.Can ectomycorrhizal fungi circumvent the nitrogen mineralization for plant nutrition in temperate forest ecosystems.Soil Biology and Biochemistry,2011,43(6):1109-1117.
[40]  Kerley S J,Read D J.The biology of mycorrhiza in the Ericaceae.New Phytologist,1997,136:691-701.
[41]  Hagerman A E,Robbins C T.Implications of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms.Journal of Chemical Ecology,1987,13(5):1243-1259.
[42]  Wurzburger N,Hendrick R L.Rhododendron thickets alter N cycling and soil extracellular enzyme activities in southern Appalachian hardwood forests.Pedobiologia,2007,50(6):563-576.
[43]  Bartosz A,Sylwia A,Aino S,Kitunen V.Tannic acid and Norway spruce condensed tannins can precipitate various organic nitrogen compounds.Soil Biology and Biochemistry,2011,43(3):628-637.
[44]  Joanisse G D,Bradley R L,Preston C M,Bending G D.Sequestration of soil nitrogen as tannin-protein complexes may improve the competitive ability of sheep laurel (Kalmia angustifolia) relative to black spruce (Picea mariana).New Phytologist,2009,181(1):187-198.
[45]  Httenschwiler S,Vitousek P M.The role of polyphenols in terrestrial ecosystem nutrient cycling.Tree,2000,15:238-243.
[46]  Leake J R,Read D J.The effects of phenolic compounds on nitrogen mobilisation by ericoid mycorrhizal systems.Agriculture,Ecosystems and Environment,1990,29(1-4):225-236.
[47]  Swift M J,Heal O W,Anderson J M.Decomposition in Terrestrial Ecosystems.Berkeley and Los Angeles:University of California Press,1979.
[48]  Bending G D,Read D J.Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi.Soil Biology and Biochemistry,1996,28(12):1603-1612.
[49]  Wu T,Kabir Z,Koide R T.A possible role for saprotrophic microfungi in the N nutrition of ectomycorrhizal Pinus resinosa.Soil Biology and Biochemistry,2005,37(5):965-975.
[50]  Wu T,Sharda J N,Koide R T.Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein-tannin complex as an N source by red pine (Pinus resinosa).New Phytologist,2003,158:131-139.
[51]  Bending G D,Read D J.Effects of the soluble polyphenol tannin acid on the activities of ericoid and ectomycorrhizal fungi.Soil Biology and Biochemistry,1996,28(12):1595-1602.
[52]  Bending G D,Read D J.Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi.Mycological Research,1997,101(11):1348-1354.
[53]  Wurzburger N,Hendrick R L.Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest.Journal of Ecology,2009,97(3):528-536.
[54]  Ames R N,Reid C P P,Porter L K,Cambardella C.Hyphal uptake and transport of nitrogen from two 15N-labelled souces by glomus mosseae,a vesicular-arbuscular mycorrhizal fungi.New Phytologist,1983,95:381-396.
[55]  Hodge A,Srewart J,Robinson D,Griffiths B S,Fitter A H.Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity.Journal of Ecology,2000,88:150-164.
[56]  Fokin A D,Knyazev D A,Kuzyakov Y V.Destruction of 14C- and 15N-labeled amino acids and nucleic bases in soil and the supply of their transformation products to plants.Eurasian Soil Science,1993,25:109-122.
[57]  Michelsen A,Schmidt I K,Jonasson S,Quarmby C,Sleep D.Leaf 15N abundance of subarctic plants provides field evidence that ericoid,ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen.Oecologia,1996,105:53-63.
[58]  Michelsen A,Quarmby C,Sleep D,Jonasson S.Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots.Oecologia,1998,115:406-418.
[59]  Nadelhoffer K,Shaver G,Fry B,Giblin A,Johnson L,Mckane R.15N natural abundances and N use by tundra plants.Oecologia,1996,107:386-394.
[60]  Nye P H.The rate-limiting step in plant nutrient absorption from soil.Soil Science,1977,123:292-297.
[61]  Leadley P W,Reynolds J F,Chapin F S.A model of nitrogen uptake by Eriophorum vaginatum roots in the field:Ecological implications.Ecological Monographs,1997,67(1):1-22.
[62]  Hodge A,Robinson D,Fitter A.Are microorganisms more effective than plants at competing for nitrogen.Trends in Plant Science,2000,5(7):304-308.
[63]  Hoger A,Robinson D,Griffiths B S,Fitter A H.Why plants bother:Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete.Plant,Cell and Environment,1999,22:811-820.
[64]  Hodge A,Stewart J,Robinson D,Griffiths B S,Fitter A H.Spatial and physical heterogeneity of N supply from soil does not influence N capture by two grass species.Functional Ecology,2000,14:645-653.
[65]  Xu X,Ouyang H,Kuzyakov Y,Richter A,Wanek W.Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau,China.Plant and Soil,2006,285(1-2):221-231.
[66]  Hodge A,Stewart J,Robinson D,Griffiths B S,Fitter A H.Plant N capture and microfaunal dynamics from decomposing grass and earthworm residues in soil.Soil Biology and Biochemistry,2000,32:1763-1772.
[67]  Hodge A,Stewart J,Robinson D,Griffiths B S,Fitter A H.Root proliferation,soil fauna and plant nitrogen capture from nutrient-rich patches in soil.New Phytologist,1998,139:479-494.
[68]  Schulten H R,Schnitzer M.The chemistry of soil orgenic nitrogen:A review.Biology and Fertility of Soils,1998,26:1-15.
[69]  Murphy D V,Macdonald A J,Stockdale E A,Goulding K W T,Fortune S,Gant J L,Poulton P R,Wakefield J A,Webster C P,Wilmer W S.Soluble orgenic nitrogen in agricultural soils.Biology and Fertility of Soils,2000,30:374-387.
[70]  Ros G H,Hoffland E,van Kessel C,Temminghoff E J M.Extractable and dissolved soil organic nitrogen——A quantitative assessment.Soil Biology and Biochemistry,2009,41(6):1029-1039.
[71]  Jones D L,Healey J R,Willett V B,Farrar J F,Hodge A.Dissolved organic nitrogen uptake by plants——An important N uptake pathway.Soil Biology and Biochemistry,2005,37(3):413-423.
[72]  Yu Z,Zhang Q,Kraus T E C,Dahlgren R A,Anastasio C,Zasoski R J.Contribution of amino compounds to dissolved organic nitrogen in forest soils.Biogeochemistry,2002,61:173-198.
[73]  Jones D L,Shannon D V.Murphy D,Farrar J.Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils.Soil Biology and Biochemistry,2004,36(5):749-756.
[74]  Jones D L,Willett V B,Stockdale E A,Macdonald A J,Murphy D V.Molecular weight of dissolved organic carbon,nitrogen,and phenolics in grassland soils.Soil Science Society of America Journal,2012,76(1):142.
[75]  Hedin L O,Armesto J J,Johnson A H.Patterns of nutrient loss from unpolluted,old-growth temperate forests:Evaluation of biogeochemical theory.Ecology,1995,76(2):493-509.
[76]  Perakis S S,Hedin L O.Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds.Nature,2002,415(6870):416-419.
[77]  Haynes R J.Labile organic matter fractions as central components of the quality of agricultural soils:An overview.Advances in Agronomy,2005,85:221-268.
[78]  Mcdowell W H,Currie W S,Aber J D,Yano Y.Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils.Water,Air and Soil Pollution,1998,105:175-182.
[79]  Neff J C,Hobbie S E,Vitousek P M.Nutrient and mineralogical control on dissolved organic C,N and P fluxes and stoichiometry in Hawaiian soils.Biogeochemistry,2000,51:283-302.
[80]  Michalzik B,Matzner E.Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem.European Journal of Soil Science,1999,50:579-590.
[81]  Andersson S,Nilsson S I,Saetre P.Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH.Soil Biology and Biochemistry,2000,32:1-10.
[82]  Khalid M,Soleman N,Jones D L.Grassland plants affect dissolved organic carbon and nitrogen dynamics in soil.Soil Biology and Biochemistry,2007,39(1):378-381.
[83]  Turnbull M H,Schmidt S,Erskine P D,Richards S,Stewart G R.Root adaptation and nitrogen source acquisition in natural ecosystems.Tree Physiology,1996,16:941-948.
[84]  Jones D L,Kielland K.Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils.Soil Biology and Biochemistry,2002,34:209-219.
[85]  Jones D L,Kielland K.Amino acid,peptide and protein mineralization dynamics in a taiga forest soil.Soil Biology and Biochemistry,2012,55:60-69.
[86]  Jones D L.Amino acid biodegradation and its potential effects on organic nitrogen capture by plants.Soil Biology and Biochemistry,1999,31:613-622.
[87]  Lipson D A,Raab T K,Schmidt S K,Monson R K.An empirical model of amino acid transformation in an alpine soil.Soil Biology and Biochemistry,2001,33:189-198.
[88]  Nsholm T,Persson J.Plant acquisition of organic nitrogen in boreal forests.Physiologia Plantarum,2001,111:419-426.
[89]  莫良玉,吴良欢,陶勤南.高等植物对有机氮吸收与利用研究进展.生态学报,2002,22(1):118-124.
[90]  王文颖,刘俊英.植物吸收利用有机氮营养研究进展.应用生态学报,2009,20(5):1223-1228.
[91]  徐兴良,白洁冰,欧阳华.植物吸收土壤有机氮的研究进展.自然资源学报,2011,26(4):715-724.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133